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Abstract. Qualitative modelling of spatial relationships has often been considered as a context 
independent task in order to provide a reasoning model in generic form. Despite the significant 
interest in these models, there is still sufficient scope for context dependent reasoning in space 
and time. This paper proposes a qualitative spatial reasoning model, oriented to the modelling 
and simulation of several cars acting in a multi-lane circuit, which can be considered as an 
illustrative example of a constrained frame of reference. The modelling objects of interest are 
individual cars whose cardinal relationships to external cars and actions are modelled. This 
dynamic system is analysed, and a set of interrelationships is identified at different levels of 
abstraction, together with inference rules that model the displacement of several cars in a 
circuit. The potential of this model is illustrated and calibrated using an agent-based prototype.  
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1. Introduction 

Decentralized modeling has opened a new scientific approach for studying “emergent” phenomena, 
i.e., complex patterns emerging from interactions among simple components. The tendency to 
assume centralized control makes it difficult for people to understand many phenomena in the world 
(Resnick 1997). This deep-seated resistance to decentralised thinking is due to the habit of using 
since childhood the Newtonian way of thinking, focusing on the behaviours of systems, not on the 
actions of components. While the Newtonian approach of a system used macro-models able to 
reproduce the observable behaviour of a system, decentralized thinking has introduced the theory of 
micro-simulation. This is a bottom-up approach, where a complex system is viewed as a large set of 
small, interacting components. The method consists in constructing minimal microscopic models that 
are capable of reproducing the macroscopic laws of the system by emulating the behaviour of every 
individual entity in the system.  

Decentralization signifies self-organization of systems. Its first principle is to establish simple rules 
for individual units. One must choose the most significant characteristics of the basic components of 
the system which will render a macroscopic behaviour, closest to reality as possible. This is usually 
difficult due to the enormous number of degrees of freedom a system can contain microscopically. 
The second principle is the use of cellular automata, a discrete spatio-temporal approach of 
microscopic units (Von Neumann 1966). In the concept of cellular automata, a virtual world is 
divided into a uniform grid of “cells” in which cellular automata move at each “step”, i.e., at each 
discrete unit of time. The essential features of a given cellular automaton are: 

 
• its state, which is an array of parameters function of time or not, 
• its neighborhood, defined by the presence or not of other cellular automata in the nearest cells, 
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• its behavior, that is the set of rules that define its evolution at each time step. These rules are 
generally  derived from its current state and neighborhood.  

    Cellular automata support the decomposition of complex behaviours much simpler individual 
units. By building appropriate rules into a cellular automaton, one can simulate many kinds of 
complex behaviours. Cellular automata favour simplified knowledge acquisition and  increased 
computational performance. Related to cellular automata are agent-based systems in which 
autonomous agents react in their environment using some similar modelling principles. Agent-based 
simulations have provided a new approach for the simulation of complex physical systems which 
include many independent variables acting and reacting together (Casti, 1997). An agent-based 
system can be roughly defined as a computer-based virtual system with multiple agents acting within 
it. All agents have an ability to sense the environment they are “living on” and make actions based on 
what they perceive. In terms of degree of autonomy, such systems can be classified in different 
categories from reactive and non-autonomous agents to intelligent and highly autonomous agents. 
Reactive agents are only subject to local interaction and communication with their neighbouring 
agents and environment. Therefore, their actions are local rather than global. The global sense of the 
environment is given to the observer that interacts with the simulation and defines the initial 
conditions for the simulation according to his knowledge and previous experience of the system 
behaviour. 

      In order to replicate complex behaviours there is still a need to integrate some qualitative 
knowledge in the way autonomous agents react in their environment. For instance, multi-agent 
systems used to model dynamic systems consider some general modelling patterns at the individual 
level without considering different levels of abstraction in the way these agents perceive their 
environment. In traffic modelling, making a qualitative difference between driver behaviours is a 
very much relevant assumption as these drivers act differently in function of many physical and 
social parameters. The objective of this paper is to integrate qualitative modelling concepts within a 
combined multi-agent and cellular automata approach to replicate the behaviour of a multi-lane 
traffic system. We propose a spatial qualitative approach that gives several levels of abstraction in 
analysing the neighbourhood of individual vehicles acting in a circuit of reference. The model is 
illustrated and calibrated through a prototype development based on the agent-based software 
StarLogo developed by the MIT media Lab. (Resnick 1997). 

       The remainder of this paper is organised as follows. Section 2 briefly introduces traffic 
modelling principles. Section 3 introduces the basis for our modelling approach, and qualitative 
relationships between several dynamic vehicles within a circuit. These relationships are identified at 
different levels of abstraction. Section 4 proposes some inference rules that constitute the dynamics 
of the represented traffic system. The simulated system is presented, calibrated and discussed in 
Section 5. Finally Section 6 draws some conclusions. 

2. Traffic modelling background 

The development of traffic simulation since the early 1950’s has been tremendous. This, of course, is 
partly due to the development of computer technology. Indeed, with the increasing speed and 
computational power of information technologies, traffic simulations have evolved from the fairly 
well covered local roads, to network wide systems where several types of units are integrated in one 
system. Computational implementations of traffic simulations are either based on continuous models 
of space and a discrete approximation of time based for example on differential equations 
(Wiedeman, 1997), or discrete representation of space and time based on autonomous decentralized 
systems, i.e., micro-simulation and cellular automaton (Cremer and Ludwig 1986, Simon and Nagel 
1998). Decentralized simulations are based on the simulation of vehicle-vehicle interactions, so-
called microscopic interactions. These vehicle interactions are modeled using some basic primitives : 
 
• the agents, the actors of the simulation, that is the vehicles, 
• the environment, the space in which the agents evolve, that is the road network, and 
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• the rules that determine the vehicle behaviours. 

      In a traffic simulation, rules can be identified around three main principles. The first one, so-
called “forward motion” defines the way cars advance by accelerating and decelerating. The second 
one that defines the “lane changing rules”, relies on two main criteria: (1) the incentive criterion : the 
need or not to change lanes in order to reach one’s maximum speed faster and optimize one’s travel 
time ; and (2) the security criterion : the possibility to change lanes if there is enough space in the 
target lane. One can also make a difference between symmetric (rules used by Americans) and 
asymmetric systems (rules mostly used by Europeans). In the symmetric system, a vehicle in the 
central lane can overtake by the right or by the left, all lanes are equivalent in terms of speed average. 
Whereas in the asymmetric system, a vehicle has to keep right, using the center and the left lanes 
only when it needs to overtake (the contrary in UK-based systems). In a traffic simulation, a vehicle 
perceives its environment within a given circuit through cardinal relationships and relative speeds: 
other cars are taken into account or not in function of their relative positions and relative speed. 
According to the importance given to individual driver behaviors, there are several levels of 
granularity, i.e. the way the agents “see” their world. Likewise, the perception of the world can also 
depend on the intelligibility of the agent. 

      Modelling multi-lane traffic is 
not straightforward as the overall 
behaviour of such system is based 
on individual human decisions 
which are non-deterministic. Most 
simulation approaches attempt to 
replicate multi-lane traffic systems 
using microscopic models that 
replicate the observed behaviour of 
the macroscopic dynamic from 
vehicle actions identified at the 
individual level (Nagel et al. 1997). 
Current modelling approaches of 
multi-lane traffic are based on the 
modelling of a set of driving 
decision rules at the individual 
level, together with a computational model that simulates the evolution of a multi-lane system at the 
macro-level. These decision rules mainly model change of lanes decisions. These decision are based 
on several factors that can be summarised as follow: a vehicle changes lane if there is another vehicle 
ahead with a slower speed and if there is enough space ahead and behind to make this change of lane 
possible; The “ahead” factor is analysed with different approximations. Scheduling conflicts are also 
generally considered by simple algorithms that make either changes to a left lane or right lane the 
priority when a conflict does occur. The same method can be also applied to left and/or right lanes 
depending on national contexts and particularities. These approaches are generally calibrated and 
validated using the typical density inversion phenomena that mainly represents the fact that traffic 
flow increases nearly linearly with density until it reaches a maximum at 40 vehicles/km/2 lanes, 
from there traffic flow then decreasing with increasing density (see figure 1). 

      Individual displacement rules generate patterns at the global circuit level. Density is the main 
parameter in a traffic simulation.  It defines the number of vehicles per km per lane. In every freeway 
traffic model, another quantity of interest is the average flow. A characteristic of a density versus 
flow graph in a traffic simulation is traffic flow breakdown.  

 
      As shown in Figure 1, traffic flow first increases nearly linearly with density until it reaches a 
maximum at the traffic flow breakdown point. From there flow decreases with increasing density, and 
the scatter of the values is much larger than before. The best explanation for this is that, for low 
densities, traffic is roughly laminar and jams are short lived. In consequence the addition of vehicles 

 

 

Figure 1 Flow-density graph 
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does not change the average speed much and flow is linear function of density. For high densities, 
traffic is an irregular composition of jam waves, and laminar outflow traffic between jams (Nagel et 
al. 1998). 

      Another pattern of a freeway traffic, which is specific to the asymmetric system, is the density 
inversion of lanes, i.e., if the flow is high enough, the passing lanes become more crowded than the 
one for slower cars. The equilibrium is only reached at densities above the traffic flow breakdown 
point, hence in traffic congestion. A new trend in traffic simulation is to analyze “stop-and-go 
waves”, i.e., from free traffic downstream to synchronized congested traffic, in order to explain the 
origin of the phenomenon and to describe the detailed features of transition of stop-and-go patterns.  

      As the laws of interactions are based on human reaction, which are neither simple nor mechanical 
by nature, the first role of emerging data is to help the creator of the traffic simulation to calibrate his 
simulation. The parameters used to calibrate must run at a microscopic level. For instance, modifying 
the ratio between acceleration and deceleration has a strong influence on the occurrence of jams. 
Moreover, security criteria can be changed in a function of lanes in order to be closer to reality. The 
way people accelerate is a difficult pattern to model, e.g., people in a traffic jam tend to be less 
inclined to gain speed rapidly. In order to obtain a graphic with a significant traffic flow breakdown,  
there is a need to differentiate acceleration in a traffic jam and acceleration in a “free flow zone” 
(Kraub et al. 1998). A driver changes lanes for two reasons: because he wants to and because he can. 
Those two criteria are respectively the incentive criterion and the security criterion.  The incentive 
criterion must be verified first, then only is the security criterion verified.  Thus a car changes lanes 
only after having verified both criteria. Also a car (i.e. driver) wants to change of lane to obtain its 
maximum speed, or so that he or she doesn’t have to slowdown. The forward visibility is  once again 
important in order to obtain an optimal incentive criterion.  This leads to compare the available space 
ahead on adjacent lanes.  

      To the best of our knowledge, none of these models attempt to replicate the overall behaviour of a 
multi-lane system using multi-abstraction levels: in the context of cellular automata approaches, 
space is represented as an uniform grid in which vehicles take decision. Instead we do believe that the 
behaviour of a multi-lane traffic system is based on human decisions which are taken at different 
levels of granularity depending on human driver profiles. Our proposed model will support such a 
principle using different levels of granularities in the cellular automata model and qualitative spatial 
reasoning, that is, different levels of spatial relationships between vehicles acting in a multi-lane 
environment. Moreover the precise modelling of such system must integrate variety and random in 
the type of individual behaviour, this is not currently the case in the above mentioned methods. In 
order to replicate this variety we propose a multi-agent modelling approach which is relatively 
efficient to simulate different knowledge at the microscopic level. Our work can be related to the one 
of Fernyhough et al. (1997). This research recognises and categorises traffic events from the analysis 
of video inputs. However the role of the prototype developed so far by these authors is to recognise 
and classify traffic events although our model proposes a simulation of a multi-lane traffic system 
from a micro-modelling point of view, individual behaviours being modelled at different levels of 
abstraction and using different types of knowledge and actions.  

 

3. A multi-level traffic modelling approach 

3.1 Spatial reasoning background 

Artificial Intelligence reasoning has been widely discussed in terms of context dependent versus 
generic oriented model approaches that can be used in order to represent physical systems (Freksa 
and Röhrig, 1993; Burrough and Frank 1995, Mark and Frank 1996, Mujerkee 1998). Most 
approaches proposed so far have been generic; they identify spatial relationships based on either 
high-level cognitive concepts or elementary geometric primitives depending on the modelling 
viewpoint adopted. These models provide important theoretical backgrounds for the spatial analysis 
of physical systems. However, there is still scope for the development of context dependent 
relationships that satisfy the constraints of the represented domain in order to achieve a more efficient 
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and realistic application. For example, many applications involve solid bodies, which then restrict the 
possible topological relationships to non-intersecting relationships. The spatial frame of reference, 
implicitly defined as an infinite one in most reasoning approaches, can also be constrained to a 
bounded plane or volume that further limits the set of plausible topological relationships. 
Representing spatial relationships is the first step towards analysis of the dynamics of physical 
systems. The second step involves the integration of time and the evolution of the represented 
system. 

      Spatial reasoning models use different assumptions and levels of abstraction. They are based on 
fundamental geometric properties of space or high-level cognitive concepts. On the one hand, 
geometric, often topological, models are based on possible and quantifiable relationships between 
basic spatial primitives (e.g., point, line, polygon, region) (Pullar and Egenhofer 1988, Egenhofer 
1991, Randell et al. 1992, Clementini et al. 1993, Cui et al. 1993). They are formally defined but 
often limited to a countable number of spatial primitives (i.e., simple regions, regions with holes, 
unions of regions with a limited number of regions).On the other hand, cognitive models use and 
produce non-measurable qualitative concepts (Montello and Golledge 1999), e.g., the perception of 
the relative position/orientation of a body with respect to the position of the observer (cf. 
Freundschuh and Egenhofer 1997). Resulting relationships are often difficult to formally define and 
bound. Cognitive models are often applied to the description of common-sense spatial knowledge. 
For example, in (Egenhofer and Rodriguez, 1997), a relational algebra is used to model the relative 
spatial configurations of a mobile object with respect to a container and a surface in a room space, 
which act as the local frame of reference. The algebra identifies a set of minimal spatial relations and 
composition relations. Although the time dimension is not considered, this approach can be 
considered as context dependent because the table and the container constitute a constrained space in 
which the object is manipulated. Overall, cognitive models provide an alternative to quantitative 
models for the understanding of physical systems whose behaviour and dynamism are relatively 
complex and hence difficult to measure and evaluate with precision. They tend quite naturally 
towards application within cognitive systems such as robot motion planning (Latombe 1991), and 
human navigation in open-spaces or built-up environments to mention a few examples (Kettani and 
Moulin 1999). 

      The integration of geometric and cognitive properties of space is an avenue of research to 
explore. For example Edwards (1997) proposed a model which considers both geometric and 
cognitive properties of space. This model describes space-time events into two basic representational 
structures: views (the cognitive point of view) and trajectories represented as geometric references. 

3.2 Multi-level spatial modelling  

The modelling of our fictive system requires some form of spatial reasoning model, and the inference 
of rules and actions that simulate the behaviour of several concurrent vehicles. These imply the 
collaboration between different levels of abstraction and decision. In a landmark paper, Kuipers 
identified several distinct and complementary levels of description, that together form a hierarchical 
reference to develop inference and action rules (Kuipers, 1996). According to Kuipers, an agent 
acting in a local frame of reference is monitored through a first sensorimotor level that tracks the 
agent location. A second level, the control level, abstracts distinctive states and the evolution of such 
a system in a continuous mode. Both the first and second levels generate local knowledge of space. 
Then a third causal level models actions on those states. Finally a topological level represents the 
topological and metric properties of the represented system, providing then a global knowledge of the 
system.  
 
      We propose a context dependent modelling approach in which the properties of the represented 
system are defined from the perception of the environment by some fictive agents within a local 
frame of reference. In such a local frame of reference, an agent produces a mental and visual 
representation of the appearance, behaviour and relative positions of the external objects (Jackendoff 
1996, Frank 1998). External objects within this environment are perceived depending on influential 
factors such as proximity, salience and permanence (Tversky et al. 1998). An agent models a vehicle 
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acting in a circuit of reference (i.e., a spatially bounded frame of reference). It perceives the 
environment through cardinal relationships that characterise its relative position with respect to 
external cars, and within the circuit of reference. Such cardinal relationships further support the 
modelling of inference rules that trigger a simulated system. This reproduces the evolution of several 
vehicles within a circuit, based on some basic hypotheses and parameters (e.g., initial speed, 
maximum speed per car). Cardinal relationships are modelled at different levels of abstraction. Each 
level supports different decision mechanisms for the simulation of the actions and behaviour of the 
represented cars.  

      In the context of our model, the inference system starts from a definition of cardinal relationships 
between the represented vehicles. Distinctive states and the continuous behaviour of these vehicles 
are then triggered from a set of initial parameters and their evolution within the local frame of 
reference (i.e., the circuit). Let us remark that our prototype system is a closed experimental system, 
the sensorimotor level is therefore not relevant here. Individual actions (i.e., displacement within the 
circuit of reference) are then derived according to some typical vehicle behaviours. An action is an 
egocentric decision taken at an individual vehicle level, and this action depends on an analysis of 
relationships with other cars within the circuit. 

      In order to identify reference relationships, let us introduce the basic principles of our system. A 
car’s relationship to the reference circuit is modelled in terms of the linear location of the car within 
the circuit (a function of time and speed), and its relative transversal position within the same circuit 
according to three reference locations: at the left, in the centre, and at the right. A car’s cardinal 
relationship to an external car is modelled in terms of its relative distance and orientation according 
to its transversal position. This can be considered as an application of Freksa’s cardinal relationships 
(Freksa, 1992) to solid bodies constrained by a frame of reference. Figure 2 illustrates these concepts. 
The position of the reference car is approximated by a bounding rectangle (the polygon shaded in 
Figure 2), this bounding rectangle represents the immediate spatial environment that surrounds the 
car of reference. Relative positions to external cars are then derived from the analysis of the 
neighbourhood bounding rectangles, using different levels of abstraction as illustrated in Figure 2. 
Overall, 16 cardinal relationships are identified, in fact these form 8 pairs of converse relationships 
[(1,16), (2,15), (3, 14), (4,13), (5,12), (6,11), (7,10), (8,9)], according to the labels and identifiers 
given in Figure 2. The different levels identified in the figure represent the levels of abstraction used 
by our model (the lower the level of abstraction, the more precise the cardinal relationships and the 
inference rules are). These different levels of abstraction support different forms of inference rules 
and simulations. Some of these relationships can be generalised from higher to lower or from lower 
to higher levels of abstraction. For instance the cardinal relationships 3, 4 and 5 identified at the 
lower levels of abstraction are all generalised to a cardinal relationship 4 at the coarser level of 
abstraction. Similar generalisations apply throughout the cardinal relationships identified in Figure 2.  

      These cardinal relationships give a snapshot of a car of reference’s relationships to an external car 
within the circuit of reference. These relationships are a function of time, that is, they are valid for a 
period of time (that can be an instant). The relationships identified in Figure 2 give sixteen mutually 
exclusive and complete cardinal relationships whose validity depends of the level of abstraction. The 
levels of abstraction used in the spatial and temporal dimensions are important parameters of the 
model; they are application dependent. The respective relationships of the car of reference to the 
circuit and external cars relative motion are functions of a temporal granularity, let us say for 
example, in the range of 0.1 second in a simulated circuit condition.  

      The evolution of a car’s cardinal relationships can be modelled using an immediate sequence of 
events (if the events are continuously monitored) or by a relaxed sequence of events (if the events are 
monitored on a discrete mode). A given orientation between a car of reference and an external car is 
associated to a specific level of abstraction, and a particular transversal location of the car of 
reference within the circuit. These properties are denoted as follows: 
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Figure 2: car’s cardinal relationships at different levels of abstraction 
 

Let Carref be a car of reference, Let Carext be an external car; 

Let tr be the transversal position of a car of reference within the circuit, the domain of transversal 
positions is (left, central, right) 

Let level be the level of abstraction used for the definition of the cardinal relationship between a 
car of reference Carref and an external car Carext. The domain of levels of abstraction is (level1,  
level2, level3).  

      Let ƒ be a function that gives the set of cardinal relationships defined for a given level of 
abstraction and a transversal position. Then the range of ƒ is defined as follows 

ƒ (level1, left) = {forward, in front, right, behind, backward} 

ƒ (level1, central) = {forward, in front, left, right, behind, backward} 
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ƒ (level1, right) = {forward, in front, left, behind, backward} 

ƒ (level2, left) = {forward, in front, right in front, right, behind, right behind, backward} 

ƒ (level2, central) = {forward, left in front, in front, right in front, left, right, left behind, behind, 
right behind, backward} 

ƒ (level2, right) = {forward, left in front, in front, left, left behind, behind, left behind, backward} 

ƒ (level3, left) = {forward, in front, right in front, exterior right in front, right, exterior right, 
behind, right behind, exterior right behind, backward} 

ƒ (level3, central) = {forward, left in front, in front, right in front, left, right, left behind, behind, 
right behind, backward} 

ƒ (level3, right) = {forward, exterior left in front, left in front, in front, exterior left, left, exterior 
left behind, left behind, behind, backward} 

     Let s be a cardinal relationship, defined on the range of cardinal relationships given at a specific 
level of abstraction, according to the above function f.  A cardinal relationship between a car of 
reference, denoted Carref, with an external car, denoted Carext, at a given level of abstraction denoted 
level, is given by the function 

SR(Carref, Carext, level) = (tr, s) 

With the constraint that for a given SR, s ∈ ƒ (level, tr) 

       Then a sequence of cardinal relationships between a car of reference, denoted Carref, with an 
external car, denoted Carext, at a given level of abstraction denoted level, and over a period of time I 
is given by the function 

Seq(Carref, Carext, level, I) = [ (tr1, s1, I1),  …, (trn, sn, In) ] 

With the constraint that I1 , … , In ⊆ I and I1 , … , In  successive and non intersecting temporal 
intervals 

    
 t1 ⊆ I1  t2 ⊆ I2 

                
 
                                    t3 ⊆ I3  t4 ⊆ I3 

 

Figure 3: Modelling example 
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Let us take the example presented in Figure 3. The front car, denoted FrontCar, is the modelling 
subject of interest. The cardinal relationships to model are the ones with the white car (the one that 
appears right in front in the first snapshot), denoted WhiteCar, using the four snapshots presented in 
Figure 2, with time intervals I1, I2 and I3, for which these snapshots are respectively valid (with I = I1 
U I2 U I3). The sequence of cardinal relationships presented by Figure 2 is given as follows, first 
modelled at the level of abstraction level3: 

Seq(FrontCar, WhiteCar , level3, I) =[ (centre, right in front, I1),(left, right in front, I2),(left, right,I) ] 
At a higher level of abstraction, for example level1, the same sequence is defined as 
follows:Seq(FrontCar, WhiteCar , level1,  I) = [ (centre, in front, I1 U I2), (left, right, I3) ]

 

    
The above sequences denote some immediate sequences as the union of their periods (i.e., I1 U I2 U 
I3) gives a convex period of time. 

4. Modelling traffic behaviours: states and displacement rules 

So far this model gives a static view of the evolution of the represented system: a snapshot of cardinal 
relationships between several cars in a circuit. The simulation of vehicle displacements within the 
circuit requires the definition of explicit rules. Different levels of inferences can be modelled: 
displacement rules defined for an independent car within the circuit, and relative displacement rules 
that consider the interaction and constraints between several vehicles navigating in the circuit. The 
former represents the less constraining level, while in the latter the complexity increases according to 
a function of the number of vehicles. We adopt the following two-step approach: relative constraints 
are first applied, then independent displacement rules are triggered under the constraints defined by 
relative displacement conditions. 
      The state of a car, denoted car, in the circuit at a time t, denoted state(t), is given by the location 
loc(car, t), transversal position tr(car, t), and speed spd(car, t) of that car, as follows. 

 state(car, t) = (loc(car, t), tr(car, t), spd(car, t))  

      car identifies a car; loc(car, t) gives the location, denoted loc, of a car at an instant t; where loc is 
given in grid units; tr(car, t) gives the transversal position tr of a car at an instant t; where tr is given 
according to the domain previously defined, that is (left, central, right); spd(car, t) gives the speed, 
denoted spd, of a car at an instant t; where spd is given in grid units per unit of time. 

      Without loss of generality, the circuit is modelled as a grid of n x m grid units where for 
demonstration purposes the following inferences are applied to the cardinal relationships identified at 
the level 2 of abstraction: in the remainder of this paper, we use a n x 4 grid in which the width of the 
circuit is compliant with the level 2 used for defining cardinal relationships, that is, 3 transversal grid 
units; where n represents the length of the circuit. In order to preserve generality, we choose a part of 
circuit schematised as a perpetual bi-directional route. We then model the relative displacement 
constraints of the system, based on Resnick’s traffic example (cf. Resnick 1997, pp. 68). This 
example analyses the impact of local interactions on traffic congestion. A simplified rule to model car 
interactions can be described as follows: “If a car in front Then overtake Or slowdown; Otherwise 
speedup”. We take this simplified rule as a starting inference. Let us initialise a circuit in which 
several cars of interest are considered. Each car can be considered as an autonomous and intelligent 
agent with a form of local knowledge of space. A car’s behaviour is based on a set of parameters 
defined for illustration purposes: a speed limit and an initial speed both defined randomly. During the 
simulation a car experiences several actions such as displacements along the circuit, speed increases 
and decreases, transversal positions tr change, and overtaking events. The identification of the next 
transversal position of a car is specified thanks to an algorithmic approach (formulated in textual 
form for presentation purpose): 

The possible transversal positions given by state(car, t+1) with respect to a state(car, t) are 
given by the permissible ones amongst the neighbourhood relationships “in front” 3, 4, 5 and 
6. This gives two alternatives for tr values left and right, three for a tr value centre). Amongst 
the possible transversal positions, first the algorithm identifies which ones are unoccupied 
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(i.e., the permissible ones), keeping the current one whenever possible or taking a 
neighbourhood tr on a random basis, that is, an overtaking decision.  

In order to calculate the next displacement of a car within the circuit, different cardinal 
relationship configurations are analysed according to the car’s transversal position and external 
relationships. Let us for instance introduce a skeleton algorithm applied to the transversal 
position left at the second level, according to Figure 2. This case corresponds to the subset of 
cardinal relationships given by ƒ (level2, left), and by analysing cardinal relationships in front or 
at the same linear location assuming that cars’ behaviours are driven by such conditions in first 
approximation (cardinal relationships “behind” are then excluded). The algorithm defined for this 
case is as follows (given in pseudo-code): 

Algorithm      
tr(car, t)= left /Case left  
If (a car front and no car right in front and a car in right) Or 
If (a car front and a car right in front and a car in right) Or 
If (a car front and a car right in front and no car in right) Then 

decrease speed in the range of the speed of the car in front,  
calculate the next location   
keep the current transversal position  

check that the grid unit given by the next location and transversal position is unoccupied, if not 
calculate another transversal location for this next location, if there is no other transversal 
position free, then come back to the current location, modify the speed accordingly and find a 
suitable transversal position  

If (no car front and a car right in front and a car in right) Or 
If (no car front and no car right in front and a car in right) Or 
If (a car front and no car right in front and no car in right) Or 
If (no car front and a car right in front and no car in right) Or 
If (no car front and no car right in front and no car in right) Then 
      increase speed accordingly 
      calculate the next location  
      calculate the next transversal location according to algorithm (1) 

check that the grid unit given by the next location and transversal position is unoccupied, if not 
calculate another transversal location for this next location, if there is no other transversal 
position free, then come back to the current location, modify the speed accordingly and find a 
suitable transversal position 

The above rules are generalised under the same principles for the different cardinal relationship 
configurations identified. The next state of the system is identified when all next car’s states are 
identified. These algorithms are processed in cycle until the end of the simulation. 

 

5. Simulation experiment 

5.1 Prototyping environment  

One of our objectives is to analyse the impact and value of a qualitative spatial model on the 
behaviour of a constrained frame of reference in which several agents act independently. The 
implementation of such a qualitative reasoning model, based on individual agents, requires an 
adapted software environment. The simulation and modelling of agent behaviours have received 
much attention over the past years. Many software programs have been produced for the exploration 
of complex behaviours of autonomous adaptive agents in reality. Among others, StarLogo, developed 
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by MIT media Laboratory, allows thousands of agents to interact and provides a variety of functions 
for the purpose of simulating complex adaptive systems (Resnick, 1997, cf. 
http://www.media.mit.edu/starlogo/). StarLogo provides three main modelling concepts, so-called 
agents, patches and the observer. Agents act in a regular two-dimensional cellular space, while the 
observer initialises and monitors the activities of agents and patches that give the physical constraints 
of the environment. Among others, StarLogo has been used to model complex systems in a variety of 
disciplines such as biology, chemistry, physics, urban and earth sciences (Jiang 1999; Batty and Jiang 
2000). StarLogo offers a rapid prototyping and open software environment that supports the 
integration of spatial properties, the definition of explicit inference rules, and generation of a 
simulated system that replicates several agents (i.e., the vehicles) acting in a constrained frame of 
reference (i.e., the circuit).  

In the context of our prototype, agents 
model vehicles, and the constrained 
space is the circuit that regulates the 
displacement of those agents. Let us 
introduce the principles of the 
prototype we have developed so far. 
This simulation prototype models the 
behaviour of several cars acting in a 
circuit of reference. The simulation is 
interactive as the user can define 
several initial parameters such as the 
number of cars per lane, i.e., left and 
right, and the global speed of the 
circuit that gives an overall speed to 
the simulation (Figure 4). The latter 
parameter allows us in fact to 
interactively change the speed of the 
simulation. The simulation interface 
is divided into a control window and 
a graphic window. The control 
window supports the initialisation of the simulation while the graphic window provides the 
continuous visualisation of the progression of the simulation and the cars’ behaviour within the 
circuit. The following figure presents the layout of the circuit used for prototyping purposes. This 
circuit is represented as a perpetual bi-directional road, that is, a cycle: cars that disappear at the left 
(res. right) reappear at the right (res. left). The small square patches denote vehicles in the circuit. 
The figure below presents a typical simulation with 5 cars left, 7 cars right and a circuit that supports 
“high speeds” (e.g., speed track value of 10). Each car is initialised with a random speed limit giving 
then different individual speed behaviours within the circuit. 

 

      The overall behaviour of the environment is controlled by several monitors that indicate the 
number of vehicles that have reached their speed limit, and the total number of overtaking events 
over time. The controls give an assessment of the circuit behaviour over time. We can remark that the 
lower the number of vehicles, the more likely the circuit will reach an equilibrium state over a short 
period of time. The circuit presented on Figure 4 is snapshot of the initial circuit state after several 
overtaking decisions.   

      Inference rules, based on cardinal relationships, have been implemented. A typical overtaking 
example is illustrated by the following two simulation sequences. Figure 5a illustrates a single 
overtaking event that involves two cars involved (open overtaking choice), Figure 5b, an overtaking 
event with three cars involved (constrained overtaking choice). 

 

 Figure 4 Simulation experiment - interface 
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  t1 

  t2 
Figure 5a: single overtaking event 

 

  t10 

  t11 
 

Figure 5b: Several overtaking events with multiple choices 
 

5.2 Calibration  
The previous section shows a first form of validation, that is, the way overtaking events occur during 
the simulation.  A second important validation concerns the flow/density function and the overall 
pattern that needs to be observed: the traffic flow breakdown.  Such a calibration requires an 
experimental validation on several computed simulation, and some initial decision on the simulation 
parameters (levels of abstraction, acceleration vs. deceleration). The observed result is that the 
introduction of different levels of abstraction still complies with the density versus flow graph. 
Modifying the acceleration/deceleration parameters in function of the density provides a valid way of 
approximating the flow/density relationship (using different values of acceleration/deceleration in 
algorithm 2). This confirm the observed fact that the logical structure of traffic micro-simulation 
determines the emergent behavior, not the details of the driving rules. In fact in decentralized 
simulations, microscopic differences can often be leveled by a macroscopic view of things. Nagel and 
his colleagues have also put forward the fact that driver behavior is a very subjective notion (Nagel et 
al. 1997). Figure 6 illustrates our findings with simulation results compared to the flow/density 
relationship. Additional snapshots on that figure shows some typical circuit patterns. 

      General occurrences of traffic dynamics can be observed.  At low densities the simulation 
produces a laminar flow and jams seldom happen, and when they do, they usually clear up fast.  
Likewise, at higher densities, after the point of traffic flow breakdown, traffic is a composition of 
jams and “free flow regions”, as is observed in reality.  The traffic jam regions become more and 
more extensive with increasing density, as is observed in traffic dynamics on real freeways. 
Asymmetric lane changing rules there is a phenomenon called density inversion. This terminology is 
used in two-lane traffic (Kraub et al. 1999) when the usage of the right-lane becomes superior to that 
of the left.  On a three-lane freeway density inversion is when the two left-most lanes’ usage is 
superior to that of the right.  This occurs in our simulation at densities around the point of traffic flow 
breakdown.  Likewise, above a certain density the lane-usage becomes equal on every lane which is 
due to a generalised traffic jam.   
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Figure 6: Flow/density calibration 

6. Conclusion 
Spatial reasoning provides several avenues to explore for the simulation of complex physical 
systems. However there is still a need to adapt theoretical spatial reasoning models to the particular 
constraints of the domain of study. This paper illustrates a context-dependent spatial reasoning 
approach, based on cardinal relationships. We model relationships between several cars acting in a 
multi-lane circuit at different levels of abstraction, and by considering the spatial constraints of the 
circuit of reference. Context-dependent cardinal relationships support the inference of displacement 
rules within the circuit. The potential of the model is demonstrated by an agent-based prototype that 
integrates these spatial reasoning principles and model displacement rules. 

      Overall the prototype provides an illustration of the benefits of spatial reasoning and an 
interactive interface to interactively simulate the behaviour of the represented system, using several 
initial conditions and different levels of abstraction. Under the conditions of our simulated system, 
the prototype demonstrates that these cardinal relationships support the simulation in an effective 
way, the simulation prototype has been calibrated using the flow/density law. A simplified animated 
movie of the prototype is available at (http://www.hig.se/~bjg/RACING-MOVIE.mov), the full 
version of our prototype with source code at (http://www.hig.se/~bjg/source-code.html), and the 
StarLogo program at (http://www.media.mit.edu/starlogo/). We plan to extend the prototype to 
contexts that replicate complex urban traffic conditions. 
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