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Abstract. In this paper, we extended road-based topological analysis to both
nationwide and urban road networks, and concentrated on a sensitivity study
with respect to the formation of self-organized natural roads based on the Gestalt
principle of good continuity. Both annual average daily traffic (AADT) and global
positioning system (GPS) data were used to correlate with a series of ranking
metrics including five centrality-based metrics and two PageRank metrics. It
was found that there exists a tipping point from segment-based to road-based
network topology in terms of correlation between ranking metrics and their traffic.
To our great surprise, (1) this correlation is significantly improved if a selfish
rather than utopian strategy is adopted in forming the self-organized natural
roads, and (2) point-based metrics assigned by summation into individual roads
tend to have a much better correlation with traffic flow than line-based metrics.
These counter-intuitive surprising findings constitute emergent properties of self-
organized natural roads, which are intelligent enough for predicting traffic flow,
thus shedding substantial light on the understanding of road networks and their
traffic from the perspective of complex networks.
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1. Introduction

Natural roads are joined road segments based on the Gestalt principle of good continuity,
and they are self-organized in nature. Let us assume that every segment at each end
chooses one most suitable neighboring segment with a smallest deflection angle to join
together; and this process (refer to figure 16 later in the text for an illustration) goes
on until the deflection angle is greater than a preset threshold (e.g. 45◦). This process
resembles Bak’s sandpile [2, 3] in which sand is added continuously to generate different
sizes of avalanche. The size of avalanches exhibits a universal regularity of power law
distribution, the same behavior demonstrated by the connectivity and length of natural
roads (cf later for more detailed discussion). There is also no typical size of natural roads.
More than the avalanches, natural roads demonstrate a sort of collective intelligence [21]
that is able to predict traffic flow.

Self-organized natural roads, or strokes in terms of [23], differ from named roads that
are identified by unique names [12]. Named roads are more difficult to implement than
natural roads because of the incomplete nature of road databases, in which some segments
may have missing or wrong names. On the other hand, the formation of natural roads is
significantly biased by join principles and deflection angle threshold in the join process.
In other words, there is a sensitivity issue involved in the formation of natural roads.

doi:10.1088/1742-5468/2008/07/P07008 2
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Figure 1. A notional road network and its connectivity graphs: (a) segment-
based connectivity graph, and road-based connectivity graphs with respect to
different join principles of (b) every-best-fit, (c) self-best-fit, and (d) self-fit.

How each segment determines to join with one of its neighboring segments follows a
self-organized process based on three different join principles. The first is called every-
best-fit, and it works like this. Every pair of segments at a junction point have to negotiate
with each other to have best fit (i.e., the one with a smallest deflection angle), in terms of
which one joins which one. This principle is rather utopian or communist in nature, and
seems the best strategy. The second is called self-best-fit. Instead of every, each segment
only considers itself to find a best fit, and does not care about others in the process.
Thus it is rather selfish or capitalist in nature. Or it can be deemed a natural selection.
Similar to this selfish principle, there is another one called self-fit. Obviously each segment
tries to choose arbitrarily one fit, i.e., the one with a deflection angle less than a preset
threshold, to join, but not necessarily to be the best fit. In comparison (cf figure 1 for an
illustration, and appendix B for algorithms), the first principle always leads to a unique set
of natural roads, while the other two principles would generate enormous sets of natural
roads, depending on the search order of the segments. Figures 1(c) and (d) give just one
of many possible sets for each principle. It is one of the sensitivity issues that we intend
to study in this paper.

This paper is intended to investigate the join principles and deflection angle threshold
with respect to the formation of natural roads, and their correlation with annual average
daily traffic (AADT) and GPS data (both referred to as traffic flow or flow in what follows).
We found that there exists a tipping point from segment-based to road-based network
topology in terms of correlation between ranking metrics and their traffic flow (or metric–
flow correlation). To our great surprise, (1) the correlation based on the principles of self-
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best-fit and self-fit is much better than that based on the principle of every-best-fit, and
(2) point-based metrics (in particular for local and global integrations; see appendix C)
assigned by summation into individual roads tend to have a much better correlation
with traffic flow than line-based metrics. These counter-intuitive surprising findings
provide telling evidence that self-organized natural roads are an emergence developed
from individual road segments, and are ‘intelligent’ enough for predicting traffic flow,
thus shedding substantial light on the understanding of road networks and their traffic
from the perspective of complex networks.

The remainder of this paper is structured as follows. Section 2 introduces geometric
and topological representations of road networks using a notional road network, in
particular different transformations from geometric to topological representation using
the three join principles. We briefly introduce data sources and essential processing of
road networks as well as observed traffic in section 3. Section 4 illustrates our experiments
and findings about various sensitivity issues. Section 5 speculates in detail on the emergent
properties of natural roads and their implications. Finally section 6 concludes the paper
with a summary and future work.

2. Geometric versus topological representations of road networks

Although road networks can be abstracted as graphs, represented by a point–point
distance matrix (PPDM; cf (A.1) for an example), we still refer to them as a geometric
representation (the network in gray in figure 1(a)). This is based on the facts that (1) the
junction points have precise geometric coordinates referenced to the Earth, and (2) the
distances between the pairs of points are a major concern for the representation. The
points are defined in a Euclidean space, and the distances are taken by the matrix as its
elements. Even though the distance matrix can be further abstracted topologically into a
point–point connectivity matrix (PPCM; cf (A.2) or the connectivity graph in figure 1(a)),
it still cannot be regarded as a true topology because of a lack of an interesting structure
or pattern. We can remark that the networks or graphs have a very boring connectivity
structure, because of the lack of variation in connectivity for individual points. The same
observation can be made in reality where most junctions have a degree of 4, and a very
few have a degree less or greater than 4. However, things would be rather different if we
take a truly topological view (cf figure 4 also).

This topological view takes a higher level (macroscale) of abstraction, which considers
adjacent relationships of individual roads, i.e., a sort of road–road intersection. Seven
intersected roads can be transformed into a line–line adjacency matrix (LLAM; cf (A.3)),
which is equivalent to the connectivity graphs shown in figures 1(b)–(d) with respect
to the join principles of every-best-fit, self-best-fit and self-fit. The matrix contains all
information about the adjacency: its elements are set to 1 if the corresponding roads are
intersected and 0 otherwise. The graph based on LLAM contains no geometric information
but the binary relation (1/0), i.e., no coordinates or distances attached to the nodes and
links. However, the graph demonstrates some interesting connectivity structure, e.g., the
distribution of connectivity of the nodes is skewed significantly. It sets a clear difference
from the underlying road networks.

Another topological representation in terms of point and point relationship can be
developed. The point–point relationship is set up based on whether or not a pair of

doi:10.1088/1742-5468/2008/07/P07008 4
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Figure 2. Nationwide road networks in Sweden (a) divided into seven regions
(b) and Gävle urban street network (c). (Note: the red spot in (b) is the location
of the city Gävle.)

points share a road in common, i.e. 1 if yes and 0 otherwise in the corresponding point–
point adjacency matrix (PPAM; cf (A.4)). This alternative graph also demonstrates an
interesting structure in terms of variation of connectivity. It is important to note the
relationship of the two topological representations. They are closely related, and can
be easily derived through the operation of multiplication of line–point incidence matrix
(LPIM; cf (A.5)) and its transpose.

The LLAM-based representation is well developed and applied in the space syntax
community [7], but it is far less so for the PPAM-based representation. For the sake
of simplicity and intuition, we will respectively call them line-based and point-based
approaches [11]. Alternatively, they are named as primal and dual representations [4, 13].
They constitute a powerful tool for obtaining structure and patterns, and thus an
important analytical model for predicting traffic flow (e.g., [13]). However, the dual
relationship has yet to be applied, and a sensitivity study concerning the prediction
deserves further investigation, as shown later in this paper.

3. Data sources and processing

A main data set for the study was obtained from the Swedish Road Administration
(Vägverket), and it contains both road networks and AADT assigned to each individual
road segment. It should be noted that it is a massive data set, involving in total ∼45 000
segments, ∼100 000 km in length, across Sweden (figure 2(a)). The entire road network
is divided into seven regions (figure 2(b)). We keep the seven networks for separate
investigations for consistent checking of our findings, and in the meantime merge them
together as an entire network for some experiments. Before the experiments, isolated

doi:10.1088/1742-5468/2008/07/P07008 5
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(a) (b)

Figure 3. The number of natural roads drops as the threshold angle rises: the
case of the entire nationwide road network (a) and Gävle urban street network
(b).

segments were removed to ensure that all roads are interconnected. It is important to
note that the percentage of isolated segments is very low (<0.5%), except for the region
of Stockholm, for which it is a bit higher. This is probably a partial reason for it showing
some special behavior compared with other regions. As for the Gävle urban street network
(figure 2(c)), it consists of ∼3400 segments, and traffic flow is obtained from GPS log files,
from one taxi company [22], recording locations of about 50 taxi cabs every 10 s. The
GPS data set has been preprocessed to ensure the recoded locations are truly trajectories.
We have in total seven days (1–7 October 2007) of such data for consistent checking,
the same data as were used in [10]. Before any further experiments, we make sure the
networks are truly road segment based. If they are not, we join separate parts together to
be one segment between two junctions, in order to form the kind of road network shown
in figure 1. In the course of this process, traffic flows of the separate parts are averaged
to the segment.

4. Experiments and findings

4.1. Overall statistics on segments versus roads

We first examine the sensitivity of deflection angle threshold in forming natural streets.
We chose every fifth degree as an interval between 0◦ and 90◦ to examine how many roads
generated from individual segments with respect to the series of threshold angles. As
plotted in figure 3, the number of roads drops from 0◦ to 5◦ dramatically, and continuously
yet slowly until 30◦ is reached. And, the number tends to become rather stable from
30◦ onwards. This observation is valid for both nationwide and urban road networks.
Intuitively, 45◦ appears to be an ideal threshold angle that helps generate natural roads
with a good continuity. The number of roads becomes stable around ∼15 000 for the
nationwide network, and around ∼1100 for the urban street network. In this respect, the
nationwide road network and urban street network show a significant similarity.

doi:10.1088/1742-5468/2008/07/P07008 6
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Figure 4. Distribution of (a) segment connectivity and (b) road connectivity,
whose log–log plot shows a straight line (the inset).

It is important to note the fact that the natural roads generated by the threshold
angle 0 are identical to the segments. There are a couple of exceptions, where two adjacent
segments have no angle change at all. The distributions of segment and road connectivity
(when the threshold angle is set to 45◦) are very different: the former is a normal like
distribution, while the latter is a power law distribution (figure 4). We can remark that
over 60% of segments have a connectivity of 4 (i.e., a typical connectivity), and maximum
connectivity is not more than 11. On the other hand, maximum road connectivity is
over 220, over 80% of roads have a connectivity less than 4, and there is no typical
connectivity for natural roads. This diversity of road length and connectivity has been
illustrated in a previous study, with a big sample of American cities and expressed by the
80/20 principle [9]. Other researchers (e.g. [6, 19]) have also studied spatial networks from
the perspective of complex networks with some interesting findings.

4.2. Findings based on the line-based approach

In what follows, we will demonstrate how ranking metrics (cf appendix C) correlate with
traffic flow, and how the metric–flow correlation alters with respect to the threshold
angle and join principles. Before that, we examine whether or not the distribution of
the metrics and traffic flow shows a universal regularity of power law with respect to the
three join principles. From the plots in figure 5, we can observe that except local and
global integrations, all other metrics, as well as traffic flow (threshold angle is set to 45◦),
exhibit a power law distribution. Clearly, natural roads generated by the principle of
self-best-fit have a more striking power law than the other two. Overall, all the power law
distributions are very similar, but there is a striking similarity between that of PageRank
and connectivity (or control) metrics, and between flow and betweenness (or weighted
PageRank) metrics. This is not particularly surprising, since (1) for an undirected graph
PageRank scores reflect connectivity, and (2) the definition of betweenness metric is based
on the concept of flow.

To fully examine the metric–flow correlation, we applied them to the nationwide road
networks. Figures 7–9 demonstrate one set of results with respect to the principles of

doi:10.1088/1742-5468/2008/07/P07008 7
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Figure 5. Log–log plots of (a) connectivity, (b) control, (c) betweenness,
(d) PageRank (d = 0.20), (e) weighted PageRank (d = 0.20), (f) flow (threshold
angle = 45), (g) local integration and (h) global integration.
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every-best-fit, self-best-fit and self-fit for the region of Sydost. We can observe that in all
three cases segments (threshold angle = 0) have no metric–flow correlation at all, with R
square values being 0. However, this correlation rises gradually with the increase of the
threshold angle until 15◦ is reached, and then becomes stable for a while. It appears that
15◦ is a kind of tipping point where R square values reach a maximum and become stable
until 90◦ is reached. Of the seven metrics, weighted PageRank, PageRank, connectivity,
and control (with a decreasing order) are the best ones in terms of metric–flow correlation.
The poorest are local and global integrations, while the betweenness metric is somewhere
between the best and poorest. Cross-checking figures 7–9, self-best-fit (figure 8) is the
best option (R square over 0.75). We can also note that the damping factor d around
0.20 seems the best choice for the nationwide networks. It is important to note that in
theory connectivity is equivalent to PageRank for an undirected graph. However, due
to the different damping factor d values, the actual metric–flow correlations may not be
identical. This is clearly reflected in the plots. The observations are pretty consistent
among the seven regions of the nationwide road network. Thus, only one region is used
for illustration purpose.

Similar findings can be observed with the Gävle urban street network (figures
10–12). For instance, no metric–flow correlation exists at all for segments, but there
is a significant correlation for streets. However, the correlation tends to become stable for
PageRank metrics between 30◦ and 75◦, rather than between 15◦ and 90◦ as in the previous
case of nationwide networks. Weighted PageRank (when d = 0.95) is still the best metric
(R square over 0.7) in terms of metric–flow correlation. It is followed by betweenness,
whose R square is over 0.6. This result conforms to previous studies [8, 24]. Again both
local and global integrations are the poorest in terms of metric–flow correlation. More
importantly, the principle of self-best-fit is proved to be the best option. As for a possible
reason, we will speculate on this later on.

4.3. Findings based on the point-based approach

In this experiment, we adopt the point-based approach for forming connectivity graphs,
and then assign point-based metrics by summation into individual roads. Surprisingly,
both local and global integrations, previously demonstrating no scaling property using the
line-based approach (figures 5 and 6), exhibit a striking power law distribution (figures 13
and 14).

There is a significant improvement for local and global integrations in terms of metric–
flow correlation. There is no correlation (R square values less than 0.20) for local and
global integrations with the line-based approach. However, R square values reach around
0.8 for the case of Sydost (figure 15(a)) when the point-based approach is adopted. A
similar observation can be made for the case of Gävle (figure 15(b)). To this point,
we can remark that there is a significant relationship between scaling and metric–flow
correlation. For instance, with the line-based approach both local and global integrations
do not follow the scaling law (figures 5 and 6), and there is nearly no metric–flow
correlation for the integrations (figures 7–12). However, in the space syntax community,
it is commonly accepted that local and global integrations are the default indicators for
traffic flow. This is absolutely not the case in our experiments based on the line-based
approach. However, when we shift from the line-based to the point-based approach, local

doi:10.1088/1742-5468/2008/07/P07008 9
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Figure 6. Log–log plots of (a) connectivity, (b) control, (c) betweenness,
(d) PageRank (d = 0.95), (e) weighted PageRank (d = 0.95), (f) flow (threshold
angle = 45), (g) local integration and (h) global integration.
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Figure 7. Correlation coefficient (R square) between traffic flow and (a) five
centrality-based metrics, (b) PageRank and (c) weighted PageRank, with respect
to the threshold angle 45, based on the principle of every-best-fit and using the
case of the Sydost region. (Note: for both PageRank and weighted PageRank,
they have a series of PageRank scores with respect to different damping factor d
values.)

doi:10.1088/1742-5468/2008/07/P07008 11



J.S
tat.M

ech.
(2008)

P
07008

Self-organized natural roads for predicting traffic flow: a sensitivity study

Figure 8. Correlation coefficient (R square) between traffic flow and (a) five
centrality-based metrics, (b) PageRank and (c) weighted PageRank, with respect
to the threshold angle, based on the principle of self-best-fit and using the case of
the Sydost region. (Note: for both PageRank and weighted PageRank, they have
a series of PageRank scores with respect to different damping factor d values.
The curves are the averaged result from 20 experiments.)
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Figure 9. Correlation coefficient (R square) between traffic flow and (a) five
centrality-based metrics, (b) PageRank and (c) weighted PageRank, with respect
to the threshold angle 45, based on the principle of self-fit and using the case of
the Sydost region. (Note: for both PageRank and weighted PageRank, they have
a series of PageRank scores with respect to different damping factor d values.
The curves are the averaged result from 20 experiments.)
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Figure 10. Correlation coefficient (R square) between traffic flow and (a) five
centrality-based metrics, (b) PageRank and (c) weighted PageRank, with respect
to the threshold angle 45, based on the principle of every-best-fit and using
the case of the Gävle street network and one day traffic flow. (Note: for both
PageRank and weighted PageRank, they have a series of PageRank scores with
respect to different damping factor d values.)

doi:10.1088/1742-5468/2008/07/P07008 14
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Figure 11. Correlation coefficient (R square) between traffic flow and (a) five
centrality-based metrics, (b) PageRank and (c) weighted PageRank, with respect
to the threshold angle 45, based on the principle of self-best-fit and using the case
of the Gävle urban street network and one day traffic. (Note: for both PageRank
and weighted PageRank, they have a series of PageRank scores with respect to
different damping factor d values. The curves are the averaged result from 20
experiments.)
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Figure 12. Correlation coefficient (R square) between traffic flow and (a) five
centrality-based metrics, (b) PageRank and (c) weighted PageRank, with respect
to the threshold angle, based on the principle of self-fit and using the case of
the Gävle urban street network and one day traffic. (Note: for both PageRank
and weighted PageRank, they have a series of PageRank scores with respect to
different damping factor d values. The curves are the averaged result from 20
experiments.)
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Figure 13. Log–log plots of local (a) and global (b) integration using the point-
based approach (the case of the entire nationwide road network).
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Figure 14. Log–log plots of local (a) and global (b) integration using the point-
based approach (the case of the Gävle street network).

and global integrations become the default indicators for traffic. There appears a close
relationship between the metrics’ scaling distribution (figures 13 and 14), and the metric–
flow correlation (figures 15 and 16).

5. Discussions on emergent properties of natural roads

What we have found through the experiments can be considered to be emergent properties
of natural roads, because they are not properties of the fundamental element, i.e., road
segments. In the above experiments, we have illustrated that roads distinguish from
segments in terms of the general behaviors. Roads are generated from segments by a
self-organized process, but they demonstrate ‘intelligence’ that underlying constituent
segments lack. There is a striking zone between 30◦ and 75◦, where the emergent properties
retain stable: (1) the number of natural roads remains stable, and (2) the metric–flow
correlation does not alter much. The emergent properties remain valid for both nationwide
and urban road networks. Some slight differences between nationwide and urban road
networks do exist. Among others, the betweenness metric tends to be a good indicator
for traffic flow in urban rather than nationwide settings. Under the line-based approach,
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Figure 15. Correlation coefficient (R square) between traffic flow and point-based
centrality metrics; (a) the case of Sydost and (b) the case of Gävle. (Note: local
and global integrations in particular.)

traffic flow and all metrics except local and global integrations demonstrate the scaling
property. However, while remaining unchanged for the scaling with all other metrics
and traffic flow, local and global integrations exhibit the scaling (cf figures 13 and 14,
in comparison with figures 5 and 6) when the point-based approach is adopted, more
specifically, when point-based metrics are assigned by summation into individual roads.
Although the underlying principle or mechanism still waits to be found, we try to justify
our findings from the perspective of multi-agent systems (MAS) or complex adaptive
systems (CAS) [14, 16].

The emergent properties found can be considered to be the outcome of interactions
of individual segments from the bottom up. The segments, roads, and threshold angle
(e.g., 45◦) can be compared to the sand grains, avalanches and slope in Bak’s sandpile
model [2, 3]. Segments can be regarded as multiple agents at the microscale, in which
every individual segment interacts with its adjacent neighbors (at both ends) to form
individual roads. The forming process can be regarded as a tracking process in which
each segment at every junction point chooses one with the smallest angle to join. In the
end, the formed roads meet the condition of energy minimization. It is a natural way
of forming roads. In this regard, the formation of roads (figure 16) resembles that of

doi:10.1088/1742-5468/2008/07/P07008 18
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Figure 16. Formation of a natural road (green) in the sequence of (a)–(d) using
the principle of self-best-fit.

avalanches in Bak’s sandpile model, where sand is added continuously, and a series of
avalanches are generated as long as the slope of sand piles is greater than a threshold.
Surprisingly, the size of roads, as well as that of avalanches, demonstrates a regularity of
power law. Furthermore, the selfish oriented principles tend to capture traffic much better
than the utopian one. This may sound counter-intuitive, but it is exactly the diversity,
one of the distinguishing characteristics of CAS, that makes the difference. In other words,
the more diverse the agents are, the more intelligent the CAS.

Roads can be regarded as multiple agents at the macroscale, in which every road
interacts with every other to form a connected whole. In the connected whole, all the
roads collectively determine an individual’s status. This is particularly true for PageRank
metrics, which is explained by a federal system in which each agent (as a web page)
casts a vote to determine an individual’s status [21]. More than that, an important
page tends to have a higher weight than a less important page. Thus it is not a perfect
democracy in the sense of one page one vote. In other words, not only popularity but
also prestige determines the rankings in the whole. In addition, centrality metrics have
also this nature of collective determination, although they are not as smart as PageRank
metrics. Overall, the collectively determined metrics capture very well the traffic flow.
This is another emergent property developed from the interactions of individual roads at
the macroscale.

A third emergent property is with respect to the point-based approach. If we assign
point-based metrics by summation into individual segments, then there would be no
metric–flow correlation at all. However, things would be rather different if the point-
based metrics were assigned to individual roads. First of all, local and global integrations
exhibit a scaling property, whereas the line-based approach lacks such a property. Second,
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local and global integrations become the best metrics to capture traffic, while other
metrics remain with no significant changes. To this point, we are still unable to provide
a satisfactory explanation as to why this is so. However, we conjecture that it is due to
the modifiable areal unit problem (MAUP) [17], which should be more properly named
the modified linear unit problem. MAUP refers to the fact that the aggregation units
will affect statistics of spatial data, e.g., correlation relationships are strengthened by
aggregations. As we have noticed, the point-based metrics assigned to segments have
nearly no correlation, but tend to be highly correlated when the point-based metrics are
assigned to roads. Clearly, metric–flow correlations are strengthened by aggregations
from segments to roads. Whether this conjecture remains valid requires further
investigation.

The emergent properties and intelligence demonstrated by natural roads provide
telling evidence that cities are self-organized phenomena, which have life structure, as
articulated by [1, 20]. Linked to the empirical findings are also some fundamental, maybe
philosophical, issues such as contradictions of uniformity and ‘stupidity’ (of segments)
versus diversity and intelligence (of roads), and unpredictability (of road length) versus
predictability (of traffic). For instance, the principle self-best-fit based on natural
selections makes natural roads more diverse than the other two principles. This is probably
why it is the best principle. The behavior change from segments to roads, in particular
related to metric–flow correlation, sounds like a phase transition. This transition can
be compared to that from ants to colonies, and sand grains to avalanches. These issues
are fundamental to many complexity systems in Nature or society, which deserve further
research.

6. Conclusion

We studied road networks from the perspective of complex networks by concentrating on
the sensitivity issues with respect to join principles, the damping factors with PageRank
metrics, and the difference between line-based and point-based approaches. Using massive
road networks and traffic flow data, we found that (1) there exists a tipping point from
segment-based to road-based network topology in terms of correlation between ranking
metrics and traffic flow, (2) the correlation is significantly improved if a selfish rather than
utopian strategy is adopted in forming the self-organized natural roads, and (3) point-
based metrics assigned by summation into individual roads tend to have a much better
correlation with traffic flow than line-based metrics, and this is particularly true for both
local and global integrations. In addition, we found that weighted PageRank with an
appropriate d factor setting tends to be one of the best metrics for correlating or predicting
traffic flow. In comparison with line-based and point-based approaches, the point-based
one tends to be the best option.

We have tried to put natural roads in analogy with many complex phenomena such as
ants/colonies and sand grains/avalanches, which demonstrate emergent properties and a
universal regularity of power law distribution. We illustrated various emergent properties
developed from roads and road network topology. Our study sheds substantial light on
the understanding of road networks. Road networks, although artifacts in nature, can be
compared with biological entities, which exhibit complexity that is developed from the
interaction of individuals, and is thus bottom-up in nature.
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Appendix A. Matrices derived from the notational road network in figure 1

With reference to figure 1 in the main text of this paper, we derived various matrices,
representing different networks or graphs. First, the point–point distance matrix (PPDM)
is a matrix, a two-dimensional array, containing the distances of a set of points, which are
road junctions or ends.

PPDM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 x x 0 0 0 0 0 0 0 0 0 0
3 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0
4 0 x 0 0 x 0 0 0 0 0 0 0 0 0 0
5 0 x 0 x 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 x 0 0 x x 0 0 0 0 0 0
8 0 0 0 0 0 0 x 0 0 0 x x 0 0 0
9 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0
11 0 0 0 0 0 0 0 x 0 x 0 x 0 0 0
12 0 0 0 0 0 0 0 x 0 0 x 0 x 0 0
13 0 0 0 0 0 0 0 0 0 0 0 x 0 x x
14 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.1)

where x denotes different distances between two points. The distance matrix becomes a
binary connectivity matrix, when all x are set to 1 (figure 1(a)).
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PPCM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
5 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
8 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0
9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
12 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.2)

The line–line adjacent matrix (LLAM) is a binary matrix, whose element is set to 1 if
corresponding lines are intersected and 0 otherwise (figure 1(b)).

LLAM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b c d e f g
a 0 1 1 1 1 1 1
b 1 0 0 0 0 0 1
c 1 0 0 0 0 0 0
d 1 0 0 0 1 0 0
e 1 0 0 1 0 0 0
f 1 0 0 0 0 0 0
g 1 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.3)

The point–point adjacent matrix (PPAM) is a binary matrix indicating whether or not a
pair of points share a line in common: 1 if yes and 0 otherwise (figure 1(b)).

PPAM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1
2 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1
3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
4 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
5 1 1 1 1 0 1 1 1 0 0 0 1 1 0 1
6 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
7 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1
9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
11 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
12 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1
13 1 1 0 0 1 0 1 1 0 0 0 1 0 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
15 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)
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Generally, a line–point incidence matrix (LPIM) shows the relationship between lines and
points, i.e., whether or not a point on a line (figure 1(b)).

LPIM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1
b 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
c 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
d 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
e 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
f 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
g 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)

The above two adjacency matrices can be easily derived from LPIM using the following
operations:

LLAM = LPIM ∗ LPIMT

PPAM = LPIMT ∗ LPIM.

Appendix B. Algorithms for forming natural roads with different join principles
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B.1. Algorithm I based on the principle of every-best-fit

B.2. Algorithm II based on the principle of self-best-fit
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B.3. Algorithm III based on the principle of self-fit

Appendix C. An introduction to ranking metrics used in the paper

To make the paper self-contained, we introduce briefly the seven ranking metrics examined
in the paper, including connectivity, control, closeness which leads to both local and global
integrations, betweenness, PageRank and weighted PageRank. (Note: some of the metrics
are given in a short format such as Connect, LInteg, GInteg, and Between in the plots.)
The reader may refer to relevant literature for more details, e.g., [10] for space syntax
metrics originally developed by [5, 7] for centrality metrics, [15] for the PageRank metric,
originally developed by [18, 25] for the weighted PageRank metric. Note that space syntax
metrics with the exception of the control metric are based on centrality metrics, although
they are named differently. In what follows, we will outline the linkage.

The connectivity metric is de facto degree centrality, which measures the number of
roads that interconnect a given road. In the connectivity graph that represents road–
road intersection, connectivity is the number of nodes that link a given node. Formally
connectivity is defined by

Cnti = k (C.1)

where k is the number of nodes directly linked to the given node i.
The control metric of a node is closely related to the connectivity of the directly linked

nodes. Formally it is defined by

Ctri =

k∑
j=1

1

Cntj
(C.2)
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where k is the number of directly linked nodes (or connectivity) of a node being considered,
and Cntj is the connectivity of the jth directly linked node.

The closeness metric measures the smallest number of links from a street to all other
streets. In the corresponding connectivity graph, it is the shortest distance from a given
node to all other nodes. It is defined by

Clsi =
n − 1∑n

k=1 d(i, j)
(C.3)

where d(i, j) is the shortest distance between nodes i and j.
The closeness metric becomes a sort of local closeness when considering only nodes

within a few steps, instead of all the nodes in the connectivity graph. In this sense, the
closeness metric given by (C.3) is defined at a global level, and thus is a global closeness
metric so to speak. Both local and global closeness metrics are the basis for defining local
and global integrations, as used in our experiments.

The betweenness centrality measures to what extent a road is between roads. In
the connectivity graph, it reflects the intermediary location of a node along indirect
relationships linking other nodes. Formally it is defined by

Btwi =

n∑
j=1

j−1∑
k=1

pikj

pij
(C.4)

where pij is the number of shortest paths from i to j, and pikj is the number of shortest
paths from i to j that pass through k, so pikj/pij is the proportion of shortest paths from
i to j that pass through k.

The PageRank metric is initially defined for web graphs (directed in nature) for
ranking individual web pages [18]. The basic idea of PageRank is that a highly ranked
node is one that highly ranked nodes point to. It is defined formally as follows:

Pri =
1 − d

n
+ d

∑
j∈ON(i)

Prj

nj
(C.5)

where n is the total number of nodes; ON(i) are the outlink neighbors (i.e., those nodes
that point to node i); Pri and Prj are rank scores of nodes i and j, respectively; nj denotes
the number of outlink nodes of node j; d is a damping factor, which is usually set to 0.85
for ranking web pages.

With the above definition of PageRank, the PageRank of a node at any iteration
is evenly divided over the nodes to which it links (or outlink nodes). However, the
propagation of the PageRank should follow an uneven rule, i.e., the more popular nodes
tend to get a higher proportion. This is exactly the basic motivation of the weighted
PageRank [25].

The weighted PageRank is defined as follows:

Wpri =
1 − d

n
+ d

∑
j∈ON(i)

WprjWj (C.6)

where weight Wj is added to propagate a PageRank score from one particular node i to
its outlink nodes. This is different from equation (C.5), where a PageRank score is evenly
divided among its outlink nodes.
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The weight Wj represents the relative popularity of node j among its counterparts,
and it is defined as follows:

Wj =
wj∑
w(k)

(C.7)

where k is the counterpart nodes of j, w is the weight for individual links, indicating their
relative popularity based on the percentage of inlinks and outlinks.
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