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1 INTRODUCTION

Both environment and urban systems are complex systems that are intrin-
sically spatially and temporally organized. Geographic information systems
(GIS) provide a platform to deal with such complex systems, both from mod-
eling and visualization points of view. For a long time, cell-based GIS has
been widely used for modeling urban and environment system from various
perspectives such as digital terrain representation, overlay, distance mapping,
etc. Recently temporal GIS (TGIS) has been challenged to model dynamic
aspects of urban and environment system (e.g., Langran [25], Clifford and
Tuzhilin ][9], Egenhofer and Golledge [14]), in pursuit of better understanding
and perception of both spatial and temporal aspects of these systems.

In regional and urban sciences, cellular automata (CA) provide useful
methods and tools for studying how regional and urban systems evolve. Be-
cause of its conceptual resemblance to cell-based GIS, CA have been ex-
tensively used to integrate GIS as potentially useful qualitative forecasting
models. This approach intends to look at urban and environment systems as
self-organized processes; i.e., how coherent global patterns cmerge from local
interaction. Thus this approach differentiates it from TGIS in that there is no
database support for space-time dynamics.
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An agent-based approach was initially developed from distributed arti-
ficial intelligence (DAI). The basic idea of agent-based approaches is that
programs exhibit behaviors entirely described by their internal mechanisms.
By linking an individual to a program, it is possible to simulate an artificial
world inhabited by interacting processes. Thus it is possible to implement
simulation by transposing the population of a real system to its artificial
counterpart. Each member of population is represented as an agent who has
built-in behaviors. Agent-based approaches provide a platform for modeling
situations in which there are large numbers of individuals that can create com-
plex behaviors. It is likely to be of particular interest for modeling space-time
dynamics in environmental and urban systems, because it allows researchers to
explore relationships between microlevel individual actions and the emergent
macrolevel phenomena,

An agent-based approach has great potential for modeling environmental
and urban systems within GIS. Previous work has focused on modeling people-
environment interaction [13], virtual ecosystems [21}, and integration of agent-
based approach and GIS [21]. Rodrigues and Raper {31] have employed spatial
agents to distinguish those agents for geographic information processing. They
have defined spatial agents as agents that make spatial concepts computable
for the purpose of spatial simulation, spatial decision making, and construction
of interface agents for GIS. Ferrand has applied agent technology to both
complex diffusion processes and cartographic generalization.

This chapter explores this possibility with some practical application ex-
amples from urban and environmental systems. The remainder of the chapter
is organized as follows. Section 2 briefly reviews current approaches of cell-
based GIS and CA, as both have certain conceptual resemblances to agent-
based approaches. Section 3 introduces the autonomous agent systems, fun-
damentals, and software platforms of multiagent simulation (MAS). Sections
4, 5, and 6 present a set of examples of urban and environmental modeling
using MAS and, finally, section 7 draws the conclusions.

2 CELL-BASED GEOGRAPHIC INFORMATION SYSTEMS
AND CELLULAR AUTOMATA MODELING

Because of its spatial structure, cell-based GIS—still considered to be a very
important type of GIS—is very suitable for spatial analysis. In particular, its
data structure is very similar to a satellite image; cell-based GIS is considered
to be very important for the integration of satellite data in GIS. From the
analytical point of view, the cell-based data format is often considered to
be an intermediate process for vector GIS. To date, cell-based GIS has been
widely used in the following areas [19]:

e map algebra,
e distance mapping,
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¢ topographic feature extraction and surface description, and
o surface interpolation.

Map algebra probably is one of most conceptual framework for spatial
modeling in cell-hased GIS. It is a set of formal languages for spatial anal-
ysis and modeling. The idea was developed from the notion of a map, so it
is often referred to as cartographic modeling [34]. A map is a commonly ac-
cepted metaphor for spatial representation. Indeed, it has been used in the
map algebra for spatial representation and analysis. A map is a model of
space in reduced scale which represents multiple characteristics. A map layer
(or shmple layer) is much like a conventional map, but each layer has one single
characteristic, such as a street layer, a land use layer, etc. Fach layer consists
of numerous locations (or cells). A set of locations at a specified cartographic
distance and/or directions from a particular location is defined as neighbor-
hood. A set of locations with the same category is referred to as zone. Thus
a layer and its components (locations, neighborhoods, and zones) constitutes
the basic notions of map algebra, on which a range of operations is defined.

Based on the above-introduced notions, a range of operations have been
defined for the purpose of spatial modeling and analysis. These operations, in
terms of their scopes of imposed operations, can be categorized as five types:

o per-cell (local)

e per-neighborhood (incremental)
o per-neighborhood (focal)

e per-zone (zonal)

e per-layer (global)

Local operators are functions of a specific cell on one or more layers,
l.e., to compute a new value for every location as a function of one or more
existing values associated with that location. Per-neighborhood operations
can be classified according to the nature of the spatial relationship between
each neighborhood and its focus: incremental operations and focal operations.
Incremental operators are functions of specific locations and the geometric
condition represented at those locations. Focal operations are those that com-
pute each location’s new value as a function of the existing values, distance,
and /or directions of neighboring (but not necessarily adjacent) locations on
a specified map layer. Zonal operators are functions of irregular neighbor-
hoods on one or more layers. Global operations are used for the generation
of Euclidean distance and weighted cost distance maps, shortest path maps,
nearest-neighbor allocation maps, for the grouping of zones into connected
regions, for geometric transformations, for raster-vector interconversion, and
for interpolation.

Distance mapping involves calculation of Euclidean distance, isotropic
cost distance, and directional path distance, from or to a set of source lo-
cations. It can help to generate a buffer zone of geographic objects such as
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FIGURE 1 Basic notions of CA with overlaps to those of cell-based GIS.

rivers and roads. Topographic feature extraction and surface description have
wide application in hydrological modeling such as the derivation of water-
shed, stream networks, flow accumulation, and flow length. Cell-based GIS is
often used for surface interpolation. All these functionalities involve expensive
computation.

Cell-based GIS provides a valuable tool for spatial modeling and analysis,
which has wide application in urban and environmental systems. However, it
inherently lacks the ability to deal with the temporal dimension. As stated by
Takeyama and Couclelis [33], map algebra does not deal explicitly with spatial
relations and interaction among locations. In contrast, CA, initially developed
from computer science, are essentially designed for spatial interaction and
dynamic phenomena. It shares with cell-based GIS a number of concepts, such
as cell, neighborhood, and environment. Additionally CA provide three more
notions to handle dynamics, i.e., transition rules, states, and time (fig. 1).

States or cell states represent the states of each cell, e.g., dead or alive.
Transition rules are the heart of CA since they represent the process as time
goes by. A typical example of transition rule (Life) reads as “if a cell is off, it
turns on if exactly three of its neighbors are on. If a cell is on, it stays on if
exactly two or three neighbors are on; otherwise it turns off.” Thus interaction
not only occurs at the space level but also on the time scale.

Because of its ability to deal with both space and time, CA have been
widely used for space-time dynamics modeling in the context of GIS. In this
connection, the most influential application field is urban dynamics. However,
cities are even more complex and are beyond the capability of standard CA.
Thus, in order to deal with more complex situations, standard CA have been
extended in various ways, by considering, for instance, more states, a larger
neighborhood, and more complex transition rules. Various efforts have been
made to use CA for space-time dynamics, including among others:

o CA for urban and regional dynamics. Urban and regional systems are es-
sentially dynamics and complex processes and CA have been intensively
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used in the context of simulating and predicting these dynamic processes
(see White [36] for an overview). Both standard CA and extended CA have
used and have been proposed for very complex urban and regional dynam-
ics. These efforts provide deeper insights into urban and regional systems
from both the microlevel and the macroscale.

o CA for environmental modeling. Environmental modeling is probably one
of promising application areas of GIS, particularly in modeling space-time
phenomena such as wildfire propagation [8] and ecosystem [6]. Burrough [5]
has recently done a comprehensive overview of dynamic modeling as a set
of tool kits for geocomputation.

o [ntegration of GIS and CA. Full integration of GIS and CA has also been
considered. For instance, Wagner [35] has examined the similarities of CA
and raster GIS, and the potential to implement one to another is demon-
strated. Of particularly interest is the effort made by Couclelis and
Takeyama [11] who proposed a general mathematical framework for the
integration of GIS and CA based on the notion of proximal space [11].

However, many geographic phenomena, essentially involved with space-
time dynamics, can be thought to have emerged from individual interactions.
Usually there is more than one type of agents involved, which is beyond the
capacity of CA modeling. In this respect, autonomous agents seem to have a
high possibility for extension to modeling space-time dynamics.

2.1 AGENT-BASED MODELING

What is an agent or autonomous agent? It has been a very controversial
topic these days. Based on a comprehensive survey on the existing definitions
of autonomous agent, Franklin and Graesser [18, p. 25] have formalized an
autonomous agent as “a systemn situated within and a part of an environment
that senses that environment and acts on it, over time, in pursuit of its own
agenda and so as to affect what it senses in the future.” Thus an autonomous
agent could be humans, other animals, autonomous mobile robots, artificial
life creatures, and software agents. A few things are quite important for an
agent.

First of all, an agent is only adapted to its own environments; if an agent
leaves the environment, it may no longer be an agent. We know that a certain
kind of animal lives in a certain kind of natural environment. Change of the
environment will dramatically change their adaptation (which is limited). In
other words, different agents have different environments. Real-world agents
live in the real world; software agents “live” in computer operating systems,
databases, networks, etc.; artificial life agents “live” in artificial environments
such as on a computer screen or in its memory [18]; and spatial agents live
in geographic space. Generally, two kinds of environments are identified for
different modeling situations. A distributed environiment is a CA-like space
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TABLE 1 Properties of agents (after Franklin and Graesser [18]).

Property Meaning
reactive responds in a timely fashion to changes in the
environment
autonomous exercises control over its own actions
goal-oriented/ does not simply act in response to the environment
proactive/
purposeful
temporally Is a continuously running process
continuous
communicative/ communicates with other agents, perhaps including
socially able people
leagning / changes its behavior based on its previous experience
adaptive
mobile able to transport itself from one machine to another
flexible actions are not scripted
character believable “personality” and emotional state

which consists of a set of cells, whereas a centralized environment has a unique
structure [16].

Secondly, sense and action are two important properties of an agent, which
determine how they behave in their environment. Agents can be named as
reactive agents and cognitive (or deliberative) agents, which are respectively
the low and high end of being agents, according to the range and sensitivity
of their sense, and the range and effectiveness of their actions. In response
to what is sensed, agents take action autonomously. The differences between
reactive agents and cognitive agents can be further characterized as follows.
Humans, when they navigate in a complex urban system, can be treated as
the high end of being agent, in that they not only interact with each other as
reactive agents, but also remember what they have sensed, and they can also
do some global planning by the use of maps, relevant sources of information,
and even previous experience. Agents do things with their own agenda and,
in an agent systemn, none of them acts as a sort of leader or coordinator.

An agent is treated in the above definition as a system. To describe an
autonomous agent, it is necessary to describe its environment, sensing capa-
bilities, and actions. On the other hand, an agent can also be treated as a
part of an environment, which has a variety of properties such as reactive,
autonomous, goal-oriented, temporally, continuous, communication, learning,
mobile, flexible, and character (table 1, Franklin and Graesser [18]). The range
of properties is ordered in the sequence of intelligibility, from low to high end
of being autonomous agents. So agents are not just objects; they are those
objects with spatial communication mechanisms that allow them to interact
each other.
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There is a special kind of agent called a ‘“real-life agent” which aims
to simulate the real-world counterpart by means of intuitive visualization.
SimCity system is a very good example in this respect. It is a computer
game for children of all ages. Agents in SimCity could be various vehicles,
pedestrians, and other objects with senses which can act on city environments.
So real-life agents are directly visible to users. This property provides the
possibility for scientists to construct an exploratory simulation of real life, and
to use the computer as a laboratory for studying the informational structure
of complex systems.

3 MULTIAGENT SIMULATIONS

&

Multiagent simulation (MAS) is an agent system with multiple agents. By
using multiagent simulation rather than multiagent systems [16], we intend
to stress the SimCity-like agent systems which combine the capacities of vi-
sualization and modeling together. In contrast to SimCity, MAS usually can
be customized in an exploratory way, which means end users can set a range
of parameters for exploratory purposes.

Such simulations can be summarized as a set of the following elements:
agents, objects, environments, and coinmunications. These are described by
the quadruplet:

(agents, objects, environments, communications)

where agents are the set of all the simulated individuals; objects are the set
of all represented passive entities that do not react to stimuli (e.g., build-
ings, street furniture in urban environments); environments are the topolog-
ical space where agents and objects are located, where they can move and
act, and where signals (sounds, smell, etc.) propagate; and communications
are the set of all communication categories, such as voice, written materials,
signs, etc. Behaviors are generated by the ways in which agents interact or
communicate with other objects and their environment(s), and thus can be
seen as properties of any of these although they are usually considered to be
properties of agents. Thus an MAS can be thought of as the combination of
CA and autonomous agents (fig. 2).

A MAS provides a platform for space-time dynamics. We are develop-
ing agent-based dynamic models in a number of different contexts. The MAS
treats a population of interacting objects in a decentralized or distributed
manner, each agent having an independent behavior but with the ability to
cominunicate (with each other). T'wo types of agent can be identified: reactive
agents whose behavior depends entirely upon how they react to their envi-
ronment; and cognitive agents with plans or protocols who usually interact
with one another, are influenced by their environment, but whose behavior is
largely self-driven. In the examples sketched here, we will deal exclusively with
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FIGURE 2 Notions of MAS and those of cell-based GIS and CA.

.

reactive agent-based models where the environment is extremely important
to the simulation of behavior.

Over the past years, much effort has been made in order to provide a easily
used software platform for scientists to undertake studies on complex systerns.
Among others, the Swarm project [26] is one of the ambitious projects, which
intends to construct an MAS platform for exploring various complex systems.
It is designed to serve as a generic platform for modeling and simulating
the complex behavior of space-time dynamics. It provides a set of classes
for defining agents’ behavior, properties, etc. using the computer language
Objective-C. Based on Swarm system, various projects have been undertaken,
e.g., Transims [32] and Sugarscape [15]. However, Swarm does not, in contrast
to what it promised, provide an easily used platform for MAS for noncomputer
experts. Attempts have been made to provide a more easily used platform for
average users based on Swarm engine [22].

StarLogo [30], a MAS platform with exploratory capability, provides an
experimental counterpart of real-world complex systems. It was developed
from Logo, a programming language for children [28]. Now the new developed
StarLogo has dramatically expanded the simulation of complex systems; vari-
ous applications have been developed for simulating real-life phenomena such
as bird flocks, traffic jams, ant colonies, and market economies (for a set of
extendible models, see homepage on (http://www.ccl.tufts.edu/cm/models/)).
StarLogo consists of three characters: turtles, patches, and observer. Turtles
are actually autonomous agents living in CA-like space, each cell of which is
called a patch; interaction can occur between turtles, or between turtles and
patches through visual and chemical senses. In response to what is sensed,
turtles can move around with behaviors such as speed up/down, and heading
differently. It should be noted that the observer is not the leader or coordina-
tor, but simply responsible for creating agents in the virtual world. In other
words, global patterns created by agents are not due to the coordinated work
of the observer. The architecture of the system pictured in figure 3 indicates
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FIGURE 3 The patch-turtle-observer model.
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in spatial terms that turtles react to patches, but both turtles and patches
are subject to the controls posed by the observer.

We have applied this model to many different kinds of problems, all of
which involve some kind of motion or movement. Here we will describe three
different processes that depend on moving agents in response to the attributes
of their environment which are coded in patches. We will present traditional
models of motion in a spatial environment based on traffic which we have
developed for pedestrian movement, models of flow dynamics which relate
to how watersheds and rivers are formed, and models of how agents can be
used to explore the geometry of local environments in buildings through ideas
pertaining to what can be seen relative to the view (see Itami [23] for inter-
visibility analysis).

Many space-time dynamics can be characterized as the interaction at both
space and time dimensions. For human or vehicle movement in an urban sys-
tem, each individual interacts with each other within the neighborhood and
the environment to make a movement decision. For example, a driving behav-
ior can be simply defined as, “a car speeds up if there is no cars ahead, other-
wise slowdown or overtakes.” These behaviors lead to traffic congestion [30].
With an MAS, many space-time dynamics can be modeled.

4 PEDESTRIAN MOVEMENT IN URBAN SYSTEMS

The patterns of people’s movement in urban systems characterize one of the
very important research areas in urban studies. It has been a big concern
in a range of disciplines such as traffic engineering, urban design, and plan-
ning. Attraction and spatial configuration are traditionally considered to be
very important in characterizing the complex phenomena. It is considered to
be very important that spatial configuration is the basic driver for people’s
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movement in urban systems. Often it is found that streets which are well con-
nected attract more people. In other words, integrated streets tends to have
more people movement and, on the other hand, segregated streets tend to
have less people movement.

Within an urban system, there are two elements that have some direct
effect on people movement. From the ecological psychology [20] point of view,
human behavior in urban systems can be thought of as a stimulus-reaction
model; i.e., what is perceived determines how to act. Thus people’s movement
can be considered in some sense to be self-organized phenomena through in-
teraction between each other and their environment.

In the model following, we intend to set up a counterpart of pedestrian
movement in an Ll}'ban system, in order to explore this complex phenomena.
The aim is to investigate how people’s movement is affected by urban mor-
phological structure. Here the structure is described by space syntax, with an
integration value describing the properties of urban structure. In the simula-
tion system, the virtual pedestrians have no sense of global structure. They
just explore the open space locally and learn themselves from what they have
explored. At every moment, we collect pedestrian flows in each street segment
for the analytical purposes. The procedure can be described as follows:

Step 1: create a number of pedestrians in the center of an urban system.

Step 2: let all pedestrian move around without encountering obstacles; count
the pedestrian rates in each street segment.

Step 3: visually check if all pedestrians have distributed all around; if yes,
output pedestrian rates for analysis; if no, go to step 2.

As an example, consider figure 4, which shows a small urban system with
a relatively regular grid structure of an urban system. Let us first use space
syntax to analyze the structure. The analysis result is shown in (a), where
the structure parameter of local integration is colored by a spectrum legend,
i.e., red represents highest value and blue represent lowest value. Figure 4(b)
is a snapshot of the simulation process. The detailed scatter plot is shown in
figure 5, where the r-square tends to be 0.7.

Now we slightly change the simulation, and let only one live pedestrian in
the system, to see how the shortest paths emerge from locations. In the same
urban system, pedestrians can be modeled as working out the route from a
starting point or origin called (A) to a preset destination (B), as we show
in figure 6. As each pedestrian reacts locally to what is in the surrounding
neighborhood, we can compute the crow-fly distance from the point reached
in the path so far to the ultimate destination, and then move the agent toward
this point in terms of the local geometry which usually poses many obstacles
to moving in a straight line. At each stage the crow-fly distance is recomputed,
and the agent adapts locally. This process is a crude simulation of the dynamic
programming algorithm used to compute shortest paths, first suggested by
Bellman and Dijkstra. A typical path is shown in figure 6.
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FIGURE 4 A small urban system with a relatively regular grid structure of an

urban system.
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FIGURE 5 The regression plot between local integration and pedestrian rates.
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FIGURE 6 A shortest path emerging from local interactions.

As an exploratory platform, the program allows us to experiment repeat-
edly with the behaviors of agents. Surprisingly, each time the agent works out
the route, the routines differ slightly, but in principle are the shortest paths.
In the simulation, we only set the destination, and then let the agent explore
the space in terms of local interaction. It should be noted that the shortest
path does not emerge every time. For instance, if we set starting point and
destination at opposite side of a street block, most likely the agents will be
confused, and have problems working out a routine. Incorporating some global
knowledge in the agent solves this problem. One option would be to apply the
following visibility parameter to patches; i.e., the agent continuously interacts
with patches and obtains visibility properties to guide its navigation.

5 VISUAL FIELDS IN URBAN SYSTEMS

A view shed, or what can be seen from a certain location, has been a very
important issue in environmental modeling. View-shed analysis using the dig-
ital terrain model (DTM) has long been one of standard functions of the GIS.
However, visual field in urban systems has not received as much attention in
the GIS community. In contrast, researchers in architecture and urban stud-
ies have paid much attention to how people perceive space. Visual fields are
determined by local geometry, moving agents systematically through space
in contrast to computing geometric lines of sight [2]. It has been a very im-
portant to understand how people perceive and understand and move around
their environment. For instance, Hillier’s space syntax covered in the above
section is based on the notion of visibility, and Peponis et al. [29] have taken
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this a step further by expanding the partition space into an infinite number
of convex spaces in terms of visual perception.

In the fields of robotics and computer vision, visual fields have been very
important for robot navigation—i.e., path planning [7, 27]. For instance, be-
fore beginning a forward movement, a robot has to check whether the move-
ment is safe. The same check is performed repeatedly during the movement
to prevent collisions. In the above example about pedestrian movement, we
have used a conflict avoidance procedure, but that was a local check, which
means that the pedestrian only can see one step away.

Computation of visual field is a very intensive task [12], because it involves
computing the line of sight or possible occlusions between obstacles. Instead it
appears that agent-based approaches provide a fascinating platform to achieve
the task. The idea is that we fill the space with agents and that we get each
agent to explore thhir environment as far as they can before they come to
an obstacle that impedes their path. They make this exploration in every
direction or rather in enough directions to cover the entire space which is
represented as a raster. In essence the technique depends upon setting as
many agents as there are raster cells in the open space between obstacles—
rooms, buildings etc.—and then exhaustively computing all areas which they
can visit from their particular starting point. Later on with what we have
explored, we can explore the space dynamically to show the visual fields from
each location. The algorithm is described as follows,

Step 1: fill all open space with agents.

Step 2: alpha = 0.

Step 3: let all agents move to this direction of alpha; and accumulate dis-
tance until hit the spatial obstacle.

Step 4: alpha = alpha + increment.

Step 5: check if alpha = 360 if yes, stop; if no go back to step 3.

As an example, figure 7 illustrates part of an urban system where the
blocks are supposed to be spatial obstacles such as buildings. After the com-
putation preprocess shown above, each location of the space has a parameter
which shows how much one can see from the standing point of view. As the
nmouse moves around, a series of visual fields will be seen dynamically on
screen. One typical series is shown in figure 7 (b).

The above model has been applied to some real urban systems such as
Wolverhampton town center and London Tate Gallery. With the model, we
have constructed spatial properties such as most visible space (see Batty and
Jiang [1] for details). Various models have demonstrated that agent-based
approaches to the computation of visual fields have been very efficient and
effective. However, there exist some problems. For instance, because of the
cellular space adaptation, there is an unavoidable gap in the displayed visual
field, regardless of the fineness of the adapted grid.
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FIGURE 7 The visual fields dynamically shown using agent-based approaches.

In the visual perception of environment, Gibson [20] proposed the idea of
an optic array which is considered to be critical in human behavior. However,
it is indeed difficult to visualize an optic array. Benedikt and Burham [3]
have investigated how Gibson’s optical arrays can be objectively simplified
as isovists. It is also found that isovists, indeed, do affect human perception
in urban environments. Since isovists can be considered in a global sense, it
appears to be possible to extend an agent’s sense from local to global through
interaction with the environment. In the mean time, the visual fields are stored
as a patch variable with which agents can interact, and this could lead to more

deliberate or cognitive agents.

6 WATERSHED DYNAMICS AND WILDFIRE DIFFUSION IN
ENVIRONMENTAL SYSTEMS

There are many phenomena in environment systems that can be character-
ized as a kind of interaction between agents and environment. For example,
spatial diffusion such as air pollution, heat diffusion, and water floods can
be considered as interaction between those objects, such as pollutants, heat,
and water, with their respective environments. In the following discussion, we
discuss two examples from environmental systems.

The first example is about watershed dynamics. We first generate a ter-
rain, and smooth the surface and apply color to make it appear more realistic.
Then we create a group of water droplets and let them randomly distribute
over the surface. We use greedy search strategies to find the lowest location
within a neighborhood. The key step is to use a greedy search to find local
maximum (minimum). The procedure can be described as follows:

Step 1: create a random terrain surface and color it.
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FIGURE 8 Stream networks created from the local interaction of agents with their
environment.

Step 2: create a number of water droplets and randomly locate them on the
terrain surface.

Step 3: use a greedy search to find the highest elevation and move to the
local minimum.

Step 4: check if all water droplets are in local minimun; if yes, stop; if no,
go to step 3.

As an example, we assume an idealized terrain in which the patches code
the height of a surface without any vegetation or forest cover. Stream networks
are created by dropping water randomly onto the terrain, and then treating
each droplet as an agent whose heading (direction of flow) is computed as a
function of elevation in its neighborhood. Figure 8 shows two different terrain
models and stream networks that were generated. In the experiment, there are
a number of things we can explore. For instance, we can change the number
of water droplets, we can change terrain surface, and we can change radius of
the greedy search.

The second example is about wildfire diffusion that has been discussed
elsewhere by Resnick [30]. Since it is a very typical example for environmental
systems in GIS, we briefly discuss the example as evidence to support our po-
sition. How does wildfire spread over the forest? It depends on many factors.
One critical factor is the density of trees; i.e., if the forest is dense enough,
the fire is likely to spread all over; otherwise, it is likely to extinguish. So the
exploration of fire diffusion with different forest density could be very interest-
ing in investigating spatial diffusion phenomena. Using a different adaptation
than Resnick, we assume that the fire is the agents and the forest is the en-
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FIGURE 9 A snapshot of fire diffusion in forest with density of 61%.

vironment. Thus the fire diffusion can be thought of as spatial interaction
between fire and trees. A simple fire behavior can be described as

IF a cell is surrounded by more than one tree
THEN [fire diffuse]
ELSE [fire is extinguished]

As an example, figure 9 shows a fire diffusion pattern assuming a density of
61%.

From both the watershed and fire examples, we have reached a conclusion,
as in the above example, how the local action gives rise to a global pattern.
Obviously this example is far from complete, since factors such as gravity
or speed of flow have not yet been considered. In addition, the fire diffusion
example could consider wind factor or different types of trees in order to
generate a more robust model.

7 CONCLUSIONS

Agent-based approaches have been shown to have many advantages over exist-
ing approaches for modeling environmentation and urban systems problem.
MAS provides an exploratory platform for users to test hypotheses behind
the space-time dynamics. It provides a platform for researchers to experiment
and play what-if games with complex spatiotemporal processes, i.e., using a
computer as a laboratory for the study of complex, adaptive systems. In this
chapter, we have explored and illustrated the potential of the MAS as useful
tools for space-time dynamics. We have shown its advantages over existing
approaches such as cell-based GIS and CA, not only for space-time dynam-
ics but also for some tasks which need expensive computation. Future work
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should attempt to go beyond the limitation of reactive agents, to have cogni-
tive or deliberative agents incorporated in the MAS. Future work also implies
a fully integration of the MAS and the GIS.
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