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Flow dimension and capacity for structuring urban street networks
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Abstract

This paper aims to measure the efficiency of urban street networks (a kind of complex networks) from the perspective of the

multidimensional chain of connectivity (or flow). More specifically, we define two quantities: flow dimension and flow capacity, to

characterize structures of urban street networks. To our surprise, for the topologies of urban street networks, previously confirmed

as a form of small world and scale-free networks, we find that (1) the range of their flow dimensions is rather wider than their

random and regular counterparts, (2) their flow dimension shows a power-law distribution, and (3) they have a higher flow capacity

than their random and regular counterparts. The findings confirm that (1) both the wider range of flow dimensions and the higher

flow capacity can be a signature of small world networks, and (2) the flow capacity can be an alternative quantity for measuring the

efficiency of networks or that of the individual nodes. The findings are illustrated using three urban street networks (two in Europe

and one in the USA).

c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Urban street networks can be seen as a connectivity graph from two different and contrasting perspectives. On the

one hand, an urban street network is regarded as a graph with nodes and edges representing respectively the junctions

and street segments (between two adjacent junctions). This can be called a geometric approach. On the other hand, a

topological approach, in contrast to the geometric approach, regards an urban street network as a connectivity graph

consisting of nodes representing individual named streets [16], and edges linking the nodes if the corresponding streets

are intersected. The difference between the two approaches is subject to whether or not geometric distance plays an

important role in the graph theoretical representations. For the geometric approach, the graph edges (street segments)

are weighted by the distance between the two corresponding junctions. With the topological approach, an entire street

is collapsed as a node, and all the edges have a unit weight [25]. In other words, there is no weighting difference

among the edges. The geometric approach is an advantageous representation in conventional network analysis [12]

and transportation modelling [20] with geographic information systems (GIS), but it is not suitable for illustrating the

structure of urban street networks, since the structure captured by the geometric approach is pretty simple, i.e., 3 or 4

links for most road junctions.

∗ Tel.: +852 2766 4335; fax: +852 2330 2994.
E-mail address: bin.jiang@polyu.edu.hk.

0378-4371/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2008.02.047



B. Jiang / Physica A 387 (2008) 4440–4452 4441

The topological approach is a holistic approach that considers the interrelationship of individual streets for better

understanding the underlying structure of urban street networks. This is consistent with human cognition of large-

scale environments. For example, in conveying a direction from location A to B, we often refer to a number of named

streets that constitute the path. Using MSN Maps & Directions (mappoint.msn.com), we can easily make a query from

where you live to where you work. The returned direction or path would consist of a number of named streets attached

with mileages. This appears to suggest that topology is primary (at a structural level), and geometry is secondary

(at a detailed level). In fact, a city is indeed an interconnected whole consisting of paths, edges, districts, nodes and

landmarks at a cognitive level [18]. In a similar fashion, a city can be perceived as an interconnected whole that links

individual units [2]. These individual units or constituents have different geometric sizes and shapes, but they are

all perceived individually as a perceivable unit at a structural level. Alexander’s [2] “a city is not a tree” suggests

that a city is neither a tree nor a regular lattice, but a semilattice with some shortcuts among some far-distant units.

Interestingly enough, this semilattice structure resembles well the structure that we found in the topologies of urban

street networks in terms of street–street intersection.

The topologies of urban street networks have an efficient structure, which is demonstrated by a variety of other

biological, technological, and social networks. The structure is called a small world network that is an intermediate

status between an order and disorder. It has a higher efficiency in the sense of transporting information, goods or

viruses at both local and global levels, when compared to their regular and random counterparts. This view of high

efficiency can be seen from two prominent properties of small world networks, i.e. a small separation and a high

degree of clustering. In a social setting, a small separation implies that any two arbitrarily chosen persons A and B are

linked by a short chain of intermediate persons. The person A knows someone, who knows someone, . . . who knows

the person B, and the number of the someone is no more than 6. This is the so-called “six degrees of separation”, which

has been empirically verified by the well-known experiment conducted by Milgram [19]. It should be noted that the

two persons A and B are randomly chosen from a large population, say, the entire population of the planet. On the

other hand, small world networks tend to be highly clustered. It implies that friends of a friend are likely to be friends.

From a point of view of information flow, information can be diffused very quickly from one to another globally, and

it also spreads efficiently among the circle of the friends locally. Although we use social networks as an example, the

efficient structure explained holds true for a wide variety of real world networks (for comprehensive surveys, refer to

Refs. [1,21], or more recently, Refs. [7,23]). Small world networks help in explaining why computers can be infected

overnight, and why the SARS virus can diffuse so quickly among the large population of human beings. The beauty

of the small world networks lies on the fact that it retains an efficient structure inherited from their parents: regular

and random networks (cf. Section 2 for more explanations).

This paper aims to measure network’s efficiency or to characterize structural properties of urban street networks

from the point of view of multidimensional chain of connectivity (or flow). This work is mainly inspired by the

efficiency view of small world networks, in terms of how information flows among the nodes of a complex network.

In this connection, Latora and Marchiori [17] suggested a new formulation of the small world theory. However, the

formulation, actually current literature in small world networks, does not fully capture the structural complexity of

real world networks. What has not drawn enough attention is the multidimensional chain of connectivity [10] for

characterizing the structure of real world networks. The notion of multidimensional chain of connectivity, which is

referred to as flow in the context of this paper, is a fundamental concept of Q-analysis [4] — a computational language

for structural description. To illustrate the concept of flow, let us see how an innovation, which involves multiple

expertise, diffuses among an organization or from one person to another. Clearly the innovation would diffuse among

the individuals who have the multiple expertise. Different innovations involve different multiple expertise. Thus the

social network of the organization forms a multidimensional chain of connectivity (or flow for simplicity) for different

innovations to flow from one to another (c.f. Section 3 for more details).

With the concept of flow, we define two relevant quantities: flow dimension and flow capacity, to measure the

efficiency of individual nodes or that of an entire network. The concept and quantities are applied to three urban street

networks to illustrate some nice structural properties. To our surprise, for the topologies of urban street networks,

previously confirmed as a form of small world and scale-free networks, we find that (1) the range of their flow

dimensions is rather wider than their random and regular counterparts, (2) their flow dimension shows a power-law

distribution, and (3) they have a higher flow capacity than their random and regular counterparts. The findings have

far reaching implications for understanding the structure of urban street networks, whose topologies can be regarded

a network infrastructure to service the flows of various kinds including vehicle, people, and goods.
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Fig. 1. Lattice (a) — a big world and semilattice (b) — a small world (Note: different from the initial Watts’ model [27] and similar to Ref. [22],

we randomly add a few new edges, but the new edges do not significantly change the average degree of the lattice).

The remainder of this paper is organized as follows. Section 2 introduces some basic mathematics of the small

world and scale-free networks from a point of view of efficiency. Section 3 presents the concept and computation of

flow using a simple notational street network. In Section 4, we report our major findings based on the computation of

flow dimension and capacity for three urban street networks. Finally Section 5 concludes the paper and points to our

future work.

2. Mathematics of small world and scale-free networks

To introduce small world networks, let us start with the big world of a lattice illustrated in Fig. 1(a). Imagine that

this regular lattice is expanded to include up to hundreds of millions of nodes, so that it becomes obviously a very big

world. Generally speaking, the (topological) distance from any node to any other node tends to be very large, as in

general one has to travel node by node to reach one’s destination. However the situation can be significantly tipped, if

we add some new edges that bring some far-distant nodes together (a sort of shortcuts) as illustrated in Fig. 1(b). The

shortcuts significantly shorten the distance from any node to any other node in general, so the lattice is transferred

to a semilattice — a small world. To understand why the semilattice is a small world, we must introduce some basic

mathematics of graphs and networks.

A graph G(V, E) consists of a finite set of vertices (or nodes) V = {v1, v2, . . . vn}(where the number of nodes is

n) and a finite set of edges (or links) E , which is a subset of the Cartesian product V × V . The initial small world and

scale-free networks are based on the connectivity graphs whose edges have neither directions nor weights. This kind

of graph can be simply represented by an incidence matrix R(G), whose individual elements are defined by:

ri j =
{

1, if viv j ∈ E,

0, otherwise.
(1)

It is not difficult to note that the above incidence matrix R(G) is symmetric, i.e., ∀ri j ⇒ ri j = r ji , and that all

diagonal elements are equal to zero, i.e., ∀ri j | i= j ⇒ ri j = 0. Thus the lower or upper triangular matrix of R(G) is

sufficient for the description of the graph G. For a complete graph, in which every node links to every other, there

are n(n − 1)/2 edges. However, most real world networks are far sparser than a complete graph. If on average every

node has m edges (average degree), then a sparse graph implies m << n(n − 1)/2. The following two measures

(or equivalently the initial small world and scale-free network models) are based on the undirected, unweighted, and

connected graphs. However, this paper, or definition of flow dimension and capacity, has released the constraints. It

implies that the concept of flow to be defined in what follows is applicable for directed, weighted and unconnected

graphs as well.

Topological distance (or distance) is a basic concept of graph theory [9], and fundamental for small world networks

as well. The distance d(i, j) between two vertices i and j of a graph is the minimum length of the paths that connect

the two vertices, i.e., the length of a graph geodesic. For a given graph, the length of the maximum graph geodesic is
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called graph diameter. The distance of a given vertex vi far from all other vertices is called average path length. It is

defined by

L(vi ) = 1

n − 1

n∑
j=1

d(i, j). (2a)

The average ( 1
n

∑n
i=1 L(vi )) of the average path length of the individual vertices is the average path length of the

graph G,

L(G) = 1

n(n − 1)

n∑
i=1

n∑
j=1

d(i, j). (2b)

From the equations, we might have a better sense of understanding of why the above lattice tends to be a big world.

It is because that the average path length of a graph is increased with the square of the number of nodes (
√

n), i.e.,

the more the nodes, and the longer the average path length. This is unlike the one-dimensional lattice whose path

length is linearly increased. For a lattice that contains hundreds of millions of nodes, the average path length tends to

be a large value. However, the introduction of some shortcuts into a large lattice can significantly reduce the average

path length, and thus shrink the big world into a small one. Actually a random graph whose edges are randomly

determined in terms of which node links to which node also has a short average path length according to random

graph theory [8], first studied by Erdös and Rényi [11]. For a random graph, the average path length is increased very

slowly (logarithmically) with the number of nodes, i.e., L random = ln(n)/ ln(m), where m is the average degree of the

graph. So in terms of average path length, a small world network is very similar to a random network, i.e., a small

separation between two arbitrarily chosen nodes of the network. This implies that a small world network has a very

efficient structure for information flow at a global level.
Information flows efficiently not only at the global level, but also at a local level, i.e., in the circle of immediately

neighbouring nodes. Again with the lattice in Fig. 1a, every node has eight neighbouring nodes. If the eight nodes

all have an edge with each other (being a complete graph), then there would be in total A2
8 = 28 possible edges. But

actually there are only 12 edges as we can see. The ratio 12/28 = 0.43 indicates the degree of clustering for the eight

neighbouring nodes, i.e., the higher the ratio, the more efficient the information that flows among the neighbours.

Obviously the highest value of the ratio is 1, when the neighbours are highly connected as a complete graph, i.e. every

node links to every other node. From the information flow point of view, the highly connected complete graph has

a maximum efficiency. This can be seen from our daily lives. If all of my friends are friends with one another, then

information about me can be spread maximally among the circle of my friends. In reality, friends of a person are hardly

fully connected as a complete graph, BUT any two of the friends are likely to be friends in general. This implies a

high clustering degree for a person or a social network in general. The clustering degree is measured by the clustering

coefficient [27] that can be formally defined by,

C(vi ) = # of actual edges

# of possible edges
. (3a)

The average ( 1
n

∑n
i=1 C(vi )) of the clustering coefficient of the individual vertices is the clustering coefficient of

the graph G,

C(G) = 1

n

n∑
i=1

# of actual edges

# of possible edges
. (3b)

For an equivalent random graph (which means a graph having the same size and the same average degree as a

random graph), its clustering coefficient is equal to the probability that two randomly selected nodes get connected,

i.e., m/n. The ratio of m to n tends to a very small value (as a reminder, we are dealing with large sparse graphs).

However, for an equivalent regular graph, its clustering coefficient tends to be a big value, given by Clattice = 0.43.

In summary, both the average path length and clustering coefficient can be good indicators for the efficiency of a real

network respectively at the global and local levels, i.e. Eglob(G) = 1/L(G), Eloc(G) = C(G) [17].
The high efficiency of small world networks comes from an important fact that for most real networks like the

Internet, the connectivity is unevenly distributed among the nodes. In other words, connectivity is not randomly
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Fig. 2. A notional street network.

decided. A very few nodes are far more connected than the rest of others, i.e. vital few versus trivial majority. The

highly connected nodes are called hubs. This special category of small world networks is called scale-free networks

[5], which can explain why a small world is a small world. This is because of the existence of hubs. It also helps to

understand the nature of dynamics and evolution of many real world networks. It is important to note the relationship

between the small world networks and scale-free networks. In general, a scale-free network is certainly a small world,

but not vice verse. Small world networks can be put into different categories in terms of the nature of connectivity

distribution [3], and they all appear to have an efficient structure. In the next section, we will introduce the concept of

flow for better characterizing the efficiency of networks or of individual nodes.

3. Defining the concept of flow: Dimension and capacity

Having introduced small world networks from the point of view of information flow, in this section we attempt to

define the concept of flow. Flow is often referred to as movement of energy, material or information from one place

to another through complex networks. In reality, there are different kinds of flows, such as vehicle flows, information

flows, and flows of innovations, rumours and viruses. However, flow in the context of this paper is defined as the

multidimensional chain of connectivity, referring to alternative channels, i.e., the number of liaison actors between a

pair of actors. It aims to characterize structural efficiency of individual nodes in a network or that of the network as a

whole. How efficient a street network, or a street within the network, is in its capacity to accommodate/convey people

or vehicle movement is subject to the underlying structure. The structure can be characterized by two flow related

quantities: flow dimension and flow capacity.

For the sake of convenience and simplicity, but without loss of generality, we adopt a notional street network

for illustration of the concept and computation of flow. The notional street network consists of 11 streets (s1–s11)

and 20 junctions (j1–j20) (Fig. 2). If we concentrate on the two pairs of streets 〈s1, s4〉 (in fact any pair from the

set 〈s1, s2, s3, s4〉, or equivalently any pair from the set 〈s5, s6, s7, s8〉) and 〈s9, s10〉, clearly the former pair has four

other streets cutting across, while the latter has only two streets cutting across. It appears that the left lattice is more

efficient than the right one in transporting people or vehicles. This observation provides a basic inspiration to develop

the quantities for characterizing the structural property of a network, or that of individual nodes with the network.

To further illustrate the concept of flow, we represent the notional street network topologically by taking individual

streets (s1–s11) as nodes and street intersections as links of a connectivity graph (Fig. 3a). This connectivity graph is

actually derived from a street–street incidence matrix S(cf. matrix (A.1) in the Appendix) (Note: the matrix S is still

symmetric, but in more general, it can be asymmetric, representing a bigraph). To see how much flow there is between

each pair of streets, we compute the flow matrix using the operation F S = S ∗ S′ (cf. matrix (A.2) in the Appendix).

The flow matrix can be represented as a flow graph in Fig. 3b, where edge thickness represents flow dimensions.

As a reminder, what F S represents is the number of liaison nodes (acting as a liaison role) between every pair of

nodes. It should not be confused with the number of walks of length 2, which is obtained by S ∗ S, connecting nodes

i and j , although they are same due to the symmetric nature of matrix S in this simple example. Up to this point,

the reader may have found that the concept of flow is a bit “counter-intuitive”, because the links in Fig. 3a are not

retained in Fig. 3b. Our goal is to develop new metrics that can be used to measure structural efficiency of a network

or its individual nodes from the perspective of multidimensional chain of connectivity (or the flow we refer to). More

specifically, we want to characterize the structural efficiency based on Fig. 3b (alternative novel representation) rather

than Fig. 3a (conventional representation). This is a unique feature of our model.
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Fig. 3. The topology of the notional street network (a), and its flow graph (b) (Note: flow dimension is indicated by edge thickness with respect to

1, 2, and 4 with the figure b).

Fig. 4. Slicing the flow graph at the dimensions of two (a) and four (b).

The flow dimension refers to the number of liaison streets shared by a pair of streets, i.e., a sort of intersection

strength between the pair. For instance, the pair 〈s1, s4〉 has four common streets (i.e., s5, s6, s7 and s8), while the pair

〈s9, s10〉 has just two liaison streets. The magnitude of flow dimension reflects the degree of flow between a pair of

streets. Taking a path s2–s3–s9 for example, the first half path (s2–s3) is very wide, while the second half path (s3–s9)

very narrow. This flow graph is the starting point to define flow capacity. For the purpose of defining and computing

the flow capacity, we slice the flow graph at different dimensional levels. First the flow graph itself represents the

situation at dimension one, i.e, all edges above the dimension one are retained. We can filter out those edges whose

flow dimension is less than one, and less than two, respectively. In the end, flow graphs at dimension two (Fig. 4a)

and four (Fig. 4b) are formed. This slicing technique is taken from Q-analysis, and it is also given other names such

as m-cores [26], or m-slices [24] in social network analysis.

Before formally defining the concept of flow capacity, we assume the sliced flow graphs serve as a network

infrastructure for information flows. The flow graphs at lower dimensions can only transport low-dimensional

information, while the higher-dimensional information needs higher flow graphs. This has an analogy to the different

lanes of a street. For instance, bicycles can ride in a car lane, but cars cannot drive in a bicycle lane. The bicycles and

cars are in analogy with lower-dimensional and higher-dimensional information in this case. Therefore the flow graph

in Fig. 3(b) can only diffuse one-dimensional information flows, and the flow graph in Fig. 4(b) can diffuse four-

dimensional information flows. Flow capacity is defined as a ratio of flow width to flow length. Taking the node s1 for

example, its flow capacity at dimension one with respect to Fig. 3b can be expressed by
∑11

j=2
1

d1(1, j) = 5. With the

expression, the numerator indicates dimension one and denominator represents the flow length (which is the shortest

distance) from the particular node to all others. Clearly, the subscript of d indicates dimension one. At dimensions two

and four (with respect to Fig. 4a and b), flow capacities are computed by
∑11

j=2
2

d2(1, j) = 6 and
∑11

j=2
4

d4(1, j) = 12.

It should be noted that the flow graphs at dimensions three and four are identical. So the flow capacity at dimension

three is computed by
∑11

j=2
3

d3(1, j) = 9. The sum of the four flow capacities is the flow capacity of the node s1, i.e.,
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(5+ 6+ 9+ 12). To get rid of the size effect, the sum is divided by 11 ∗ (11− 1), so in the end the flow capacity of

the node is (5+ 6+ 9+ 12)/(11 ∗ (11− 1)) = 0.29.

Having illustrated the computation of flow capacity with the example, we can remark that there are two factors

that decide the flow capacity. One is called flow dimension and the other is called flow length (actually distance of

geodesic at different dimensional levels). Intuitively, a higher flow dimension and a shorter flow length lead to a higher

flow capacity. In general, for a vertex vi , its flow capacity is defined by

FC(vi ) = 1

(n − 1)

�∑
k=1

n∑
j=1

k

dk(i, j)
(4a)

where � is the highest-dimensional level.

The average of the flow capacity of the individual vertices is the flow capacity of the graph G,

FC(G) = 1

n(n − 1)

n∑
i=1

�∑
k=1

n∑
j=1

k

dk(i, j)
. (4b)

It is important to note that the above definition is illustrated with an undirected, unweighted and connected

graph, but it holds true for a directed, weighted, and unconnected graph as well. Obviously a complete graph has

the biggest flow capacity, since every node has the biggest flow dimension on the one hand, and the smallest

flow length from every node to every other on the other hand. It should be noted that so far the flow capacity

is defined as a measure for individual streets and the network of the streets. For the topological approach, both

primal and dual approaches are transferable [6,13]. The above definition and computation can also be applied to

the individual junctions of a street network. To achieve this, we must derive a street–junction incidence matrix first.

Taking the notional street network for example, the street–junction matrix is represented as an incidence matrix

of the size 11 × 20, namely S J (see matrix (A.3) in the Appendix). Actually the previous street–street incidence

matrix S can be derived using operation S = S J ∗ S J ′ (Note: the diagonal elements are set as zero, the same

for the following matrix J ). In the same fashion, we can derive the junction–junction incidence matrix J , i.e.,

J = S J ∗ S J ′ (see matrix (A.4) in the Appendix). Furthermore, using the junction–junction incidence matrix,

the junction–junction flow matrix F J can be derived (see matrix (A.5) in the Appendix). Based on the flow graph

and using the above formulas, the flow capacity for the individual junctions and for the entire topology can be

computed.

4. Computing the flow dimension and capacity for structuring urban street networks

We applied the concept and computation of flow to three urban street networks: Gävle (Sweden), Munich

(Germany) and San Francisco (USA), including respectively 565, 785 and 637 streets – the same datasets used

in our previous work [16]. The reader may notice from Fig. 5 that Munich is a natural (self-organized or self-

evolved) city, and San Francisco an artificial (or planned) city, whereas Gävle is somewhere between the natural

and artificial cities, in particular with reference to the fact that two neighbours of Gävle are surrounded by the ring

roads. With the networks, we intend to illustrate some hidden structure or patterns, in comparison with their regular

and random counterparts. The first step is to complete the transformation from a network to topology using the

topological approach introduced at the beginning of the paper. Fig. 5(d) illustrates the topology transformed from

the San Francisco street network. The second step is to derive the flow graphs based on the topologies, and further

compute the flow capacity for the individual nodes and for the entire topology. Three major findings are derived from

the experiments.

The first finding is that the range of flow dimensions of the topologies is extremely wider than that of their

regular and random counterparts (Table 1). For instance, the Gävle topology involves 14 flow dimensions, while

the number for its random and regular counterparts is only 2 and 3 (Table 2). This fact can be further illustrated

through a special visualization of the topologies. Again, taking the Gävle case for example, we arrange the topology

layer by layer in terms of flow dimensions, i.e., from the bottom of a lowest dimension to the top of a highest

dimension. Fig. 6 demonstrates the fact of fourteen layers with the Gävle topology, and three layers with the random

counterpart.
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Fig. 5. Street networks of Munich (a), San Francisco (b), Gävle (c) and the San Francisco topology (d).

Fig. 6. Flow graphs of the Gävle topology (a) and its random equivalent (b).

Table 1

The range of flow dimensions for the three topologies and their counterparts (RF = the range of flow dimensions)

Gävle Munich San Francisco

RF 14 11 46

RF-rand 2 2 3

RF-reg 3 4 7
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Fig. 7. Cumulative distributions of flow dimension of Gävle (a), Munch (b) and San Francisco (c) (The x-axes = flow dimension, and y-axes =
cumulative probability).

Table 2

Flow capacity (FC) of the three networks in comparison to their counterparts (Note: n= size of networks, m= average degree)

Gävle Munich San Francisco

FC 0.53 0.69 3.51

FC-rand 0.37 0.41 0.73

FC-reg 0.12 0.29 1.34

m 3.76 4.76 7.38

n 565 785 637

The second finding is that the flow dimension demonstrates a power-law distribution with different connectivity

exponents: 2.9 for Gävle, 3.6 for Munich, 1.2 for one part of San Francisco and 7.7 for another part (see Fig. 7 for

the log–log plots). This implies that most streets have a quite low flow dimension, but a few streets have an extremely

high flow dimension. This finding has a special implication for understanding traffic flows in urban systems. That is,

always making those streets of an extremely high flow dimension through would significantly ease the traffic of an

entire network system. It is important to note the two parts for the power-law tail with the San Francisco network,

which is different from many others [15]. The distributions of the flow dimension appear to fit in to that of the degree

or street connectivity distribution illustrated by our previous work [16,14].

The third finding is that the flow capacity of the topologies is larger than that of the random and regular counterparts

(Table 2). This suggests that flow capacity can be a good indicator for determining whether or a real world network is

a small world. This reminds us of the fact that the flow dimension resembles the clustering coefficient, and the flow

length resembles the average path length. Therefore, the concept of flow capacity combines the initial two small world

properties together into one formula, and it can be regarded as an alternative measure of network efficiency.

It should be noted that the above findings are made based on the primal topologies of urban street networks by

taking the named streets as the nodes of the topologies, and eventually flow dimension and capacity are assigned to

individual streets. However, we can also take the dual topologies of urban street networks by taking the junctions as

the nodes of the topologies. This way the flow dimension and capacity can be computed and assigned to the individual

junctions. Due to computational intensiveness, currently we are unable to obtain the flow capacity for the individual

junctions of an entire network. However, our experiments based on partial networks illustrated the similar findings

as above. Fig. 8 illustrates the geographic distribution of the flow capacity for the individual streets and junctions

of the Sätra neighbourhood network within Gävle. They are represented respectively as the line thickness and dot

size. We can remark that the flow capacity for streets fits quite well to that of junctions. Up to this point, we have

seen how the flow dimension and capacity are defined and computed for both streets and junctions of the urban street

networks.

The above findings have some universal value. This is particularly true for knowledge or innovation diffusion

which often needs multiple disciplinary expertise, in order for a knowledge chunk to be spread. For example, with an

organization, individuals’ expertise differs from one to another, and those who share expertise (common nodes) are
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Fig. 8. Flow capacity for the individual streets (a) and junctions (b) of the Sätra neighbourhood.

likely to have a common language, and thus to have a knowledge chunk more quickly diffused from one to another.

Those who have interdisciplinary background are likely to form m-cores for better knowledge diffusion. The concept

of flow can help in differentiating from one organization network to another, or the individual persons’ abilities in

transferring knowledge within an organization.

5. Conclusion

This paper introduces the concept of multidimensional chain of connectivity or flow to characterize structural

properties of urban street networks from both local and global levels. At the local level, it helps in differentiating

between individual streets (or equivalently junctions) from one to another in terms of efficiency and it helps in

identifying key structural streets or junctions. At the global level, it further illustrates the fact that an urban street

network departs from its random and regular counterparts based on the single measure flow capacity. A major

advantage of the flow capacity is that it takes multidimensional chain of connectivity into account while measuring

efficiency of individual units or the entire network as a whole. In spite of the modelling capability, we must stress

that the flow is a structural property, not the flows in reality such as vehicle and people flows. Whether the flow

capacity can be a good indicator for real world flows is still an open question. This has implications for our future

work.

Before any empirical verification of the concept and computation of flow, we tend to rely on its exploratory

capability rather than possibilities of predicting real world flows. It helps in understanding and exploring traffic flows

from a structural point of view. Taking the notional street network again for example, apparently it consists of two

lattices: one to the left with four parallel streets at each direction crossing each other, and another to the right with two

parallel streets crossed. From the structural point of view, the left lattice has a higher flow capacity than that of the

right one. Thus it forms a gap or hole between the two lattices in terms of information flows. From the structural point

of view, traffic jams are likely to occur between the two lattices. Of course, in reality traffic jams may not occur at all,

if the number of vehicles is very low, or the vehicles are coordinated well. However the structural analysis based on

the concept of flow capacity can help in indicating the possibility. We believe this is one of the major contributions of

this paper besides the three major findings.
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Appendix. The matrixes associated with the notional street network

The street–street incidence matrix S can be represented by,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 0 0 0 1 1 1 1 0 0 0

s2 0 0 0 0 1 1 1 1 0 0 0

s3 0 0 0 0 1 1 1 1 0 0 0

s4 0 0 0 0 1 1 1 1 0 0 0

s5 1 1 1 1 0 0 0 0 0 0 0

s6 1 1 1 1 0 0 0 0 0 0 0

s7 1 1 1 1 0 0 0 0 0 0 0

s8 1 1 1 1 0 0 0 0 1 1 0

s9 0 0 0 0 0 0 0 1 0 0 1

s10 0 0 0 0 0 0 0 1 0 0 1

s11 0 0 0 0 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)

From the matrix S, we can derive its flow matrix F S = S ∗ S′ as follows:

F S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1 0 4 4 4 0 0 0 0 1 1 0

s2 4 0 4 4 0 0 0 0 1 1 0

s3 4 4 0 4 0 0 0 0 1 1 0

s4 4 4 4 0 0 0 0 0 1 1 0

s5 0 0 0 0 0 4 4 4 0 0 0

s6 0 0 0 0 4 0 4 4 0 0 0

s7 0 0 0 0 4 4 0 4 0 0 0

s8 0 0 0 0 4 4 4 0 0 0 2

s9 1 1 1 1 0 0 0 0 0 2 0

s10 1 1 1 1 0 0 0 0 2 0 0

s11 0 0 0 0 0 0 0 2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.2)

More generally, the notational street network can be represented by a street–junction incidence matrix S J :

S J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20

s1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

s2 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

s3 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

s4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

s5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s6 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

s7 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

s8 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1

s9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

s10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

s11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.3)

From this street–junction incidence matrix, we can easily derive the above street–street incidence matrix S, i.e.

S = S J ∗ S J ′ (Note: diagonal elements of S are set to 0). In the same fashion, we derive a junction–junction incidence

matrix J = S J ∗ S J ′ (Note: diagonal elements of J are set to 0) as follows:
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J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20

j1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

j2 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0

j3 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

j4 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

j5 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0

j6 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

j7 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0

j8 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0

j9 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

j10 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0 0

j11 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0

j12 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0

j13 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 1

j14 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 1

j15 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1

j16 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1

j17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

j18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

j19 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1

j20 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.4)

Based on the junction–junction incidence matrix, we can further derive a flow matrix using the operation of

F J = J ∗ J ′ (Note: diagonal elements of F J are set to 0)

F J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

j1 j2 j3 j4 j5 j6 j7 j8 j9 j10 j11 j12 j13 j14 j15 j16 j17 j18 j19 j20

j1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1

j2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1

j3 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1

j4 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1

j5 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 2 0 0 1 1

j6 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 2 0 0 1 1

j7 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 2 0 0 1 1

j8 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 2 0 0 1 1

j9 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 2 0 0 1 1

j10 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 2 0 0 1 1

j11 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 2 0 0 1 1

j12 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 2 0 0 1 1

j13 2 2 2 2 2 2 2 2 2 2 2 2 0 4 4 4 1 1 4 4

j14 2 2 2 2 2 2 2 2 2 2 2 2 4 0 4 4 1 1 4 4

j15 2 2 2 2 2 2 2 2 2 2 2 2 4 4 0 4 1 1 4 4

j16 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 0 1 1 4 4

j17 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 2

j18 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 2 0

j19 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 0 2 0 4

j20 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 4 2 0 4 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.5)

We can remark that both flow matrixes (A.2) and (A.5) have the same range of flow dimensions.
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