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Abstract

 

We propose a novel approach to selection of important streets from a network, based
on the technique of a self-organizing map (SOM), an artificial neural network algorithm
for data clustering and visualization. Using the SOM training process, the approach
derives a set of neurons by considering multiple attributes including topological,
geometric and semantic properties of streets. The set of neurons constitutes a SOM,
with which each neuron corresponds to a set of streets with similar properties. Our
approach creates an exploratory linkage between the SOM and a street network, thus
providing a visual tool to cluster streets interactively. The approach is validated with
a case study applied to the street network in Munich, Germany.

 

1 Introduction

 

Selection of streets from a street network is an important generalization operation, and
may be a prerequisite to other generalization operations such as line simplification. A
common technique in map production is to select the streets based on semantic
attributes (mainly street types or function classes). Several researchers have pointed out
that this approach is insufficient and have claimed that topological and geometrical
properties of the streets cannot be neglected. Of note is the work of Mackaness and his
colleague (Mackaness and Beard 1993, Mackaness 1995) who recognized the potential
of graph theory in the application of street network generalization. In their work the
streets were selected by their connectivity properties. Thomson and Richardson (1995)
used a graph-theoretic approach based on the concept of minimum spanning trees to
select important street segments within a street network. From a functional point of
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view, Morisset and Ruas (1997) model the importance of streets by the amount of
‘street use’. Thus they proposed an approach of selecting characteristic streets based on
high frequency of street usage through an agent-based simulation. Thomson and
Richardson (1999) used a ‘good continuation’ principle of perceptual organization to
the generalization of networks, and of street networks in particular. The principle serves
as the basis for partitioning a street network into a set of linear elements (or strokes),
which are chains of network arcs. In terms of structural measures such as length, class
and connectivity, relative important ‘strokes’ can be derived for generalization purpose.
All the above investigations are actually oriented towards the selection of important
street segments rather than an entire named street, because street networks are modelled
at a geometric level. Recently, Jiang and Claramunt (2002) proposed a set of algorithms
based on a structural analysis. The structural approach is performed at a topological
level with a representation, which takes named streets as nodes and street intersections
as links of a connectivity graph. Based on the graph-theoretic representation, each street
is assigned by some structural measures on which the selection of important streets is
based. Eventually the selection of streets is applied to an entire named street rather than
a street segment using these structural measures.

In this paper, we propose an approach that considers street attributes involving
topological, geometric and semantic properties as input to a self-organizing map (SOM)
(Kohonen 2001). SOM is an artificial neural network algorithm that, in our study,
is used to categorise the streets in a network. More specifically, our approach adopts
the SOM training algorithm to group all streets into different categories according
to various attributes, and then selects streets at reduced map scales based on these
categories. As the process is based on multiple attributes from topological, geometric and
semantic perspectives, this approach can be considered to be comprehensive in terms of
the process. Through the trained SOM – a two dimensional grid of neurons, the simi-
larity of streets can be interactively explored and visualized. It should be noted that the
approach we propose here is a general one for categorizing objects based on multiple
attributes. Therefore, it could be used for other types of spatial object selection where
multiple attributes should be considered.

SOM has been used in many fields such as data classification, pattern recognition,
image analysis, and exploratory data analysis (for an overview, see Oja and Kaski
1999). In the domain of GIS and cartography, relatively few applications have been
made. However, Openshaw and his colleagues have used the SOM approach in spatial
data analysis to classify census data (Openshaw 1994, Openshaw et al. 1995). Recently,
some new proposals have been offered for using SOM to explore spatial data (Li 1998)
and in image classification (Luo and Tseng 2000). SOM has been used for building
typification in cartographic generalization (Højholt 1995, Sester 2001). In the typifica-
tion process, a number of building objects were set to represent a larger set of objects. A
major issue here is that the new objects should reflect the original pattern of objects.
In the approach introduced by Højholt and Sester, new building objects are placed
randomly on the map. Then the locations of the new building objects are changed using
SOM. In this training process the original building objects are used for attracting the
new building objects. In this way the location of the new building objects will give a
similar pattern as the location of the original building objects (but properties such as
parallelism are not maintained). The use of SOM in this paper is rather different. Here
it is used for attribute clustering as a pre-process for selection of streets; the locations
of the streets are not altered.
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The remainder of this paper is structured as follows. Section 2 presents the basic
principle and algorithm of SOM. Section 3 introduces multiple attributes respectively
from topological, geometric and semantic perspectives for individual streets within a
network. Based on these multiple attributes, section 4 introduces a SOM-based
approach for the selection of streets. Section 5 illustrates an application of our approach
using the Munich street network as an example. Finally, section 6 concludes the paper
and offers several ideas for future work. 

 

2 Self-organizing Map 

 

SOM is a well-developed neural network technique for data clustering and visualization.
It can be used for projecting a large data set of a high dimension into a low dimension
(usually one or two dimensions) while retaining the initial pattern of data samples. That
is, data samples that are close to each other in the input space are also close to each
other in the low dimensional space. In this sense, SOM resembles a geographic map
showing the distribution of phenomena, in particular referring to the first law of geo-
graphy: everything is related to everything else, but near things are more related to each
other (Tobler 1970). Herewith we provide a brief introduction to the SOM; readers are
encouraged to refer to a more complete description (e.g. Kohonen 2001). 

 

2.1 Basic principle

 

Let’s represent a d-dimensional dataset as a set of input vectors of 
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 dimensions, i.e.
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algorithm involves essentially two processes, namely vector quantization and vector
projection (Vesanto 1999). Vector quantization creates a representative set of vectors,
so called output vectors from the input vectors. Let’s denote the output vectors as
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} with the same dimension as input vectors. In general, vector
quantization reduces the number of vectors, and this can be considered as a clustering
process. The other process, vector projection, aims at projecting the 
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 output vectors (in
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-dimensional space) onto a regular tessellation (i.e. a SOM) of a lower dimension,
where the regular tessellation consists of 

 

k

 

 neurons. The projection is performed as such:
“close” output vectors in 

 

d

 

-dimensional space will be projected onto neighbouring
neurons in the SOM. This will ensure that the initial pattern of the input data is kept.

The two tasks are illustrated in Plate 3, where both input and output vectors are
represented as a table format with columns as dimension and rows as ID of vectors.
Usually the number of input vectors is greater than that of the output vectors, i.e. 

 

n

 

 > 

 

k

 

,
and the size of SOM is the same as that of the output vectors without exception. In
Plate 3, the SOM is represented by a transitional color scale, which implies that similar
neurons occur together. It should be emphasized that for the purpose of explanation,
we separate it into two tasks, which are actually combined together in SOM without
being sequential.

 

2.2 The algorithm

 

The above two steps, vector quantization and vector projection, constitute the basis of
the SOM algorithm. Vector quantization is performed as follows. First the output vectors
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are initialized randomly or linearly by some values for their variables. Then in the
following training step, one sample vector 

 

x

 

 from the input vectors is randomly chosen
and the distance between it and all the output vectors is calculated. The output vector
that is closest to the input vector 

 

x

 

 is called the Best-Matching Unit (BMU), denoted
by 

 

m

 

c

 

:
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learning rate function and neighbourhood kernel function, respectively.

The algorithm can be described in a step-by-step fashion as follows. 

 

Step 1: Define the input vectors that define an attribute space. 

 

The input vectors are likely
to be in a table format as shown in Plate 3, where 

 

d

 

 variables determine a 

 

d

 

-dimensional
attribute space. Based on the input vector space, an initialized SOM will be imposed for
the training process (cf. step 3). 

 

Step 2: Define the size, dimensionality, and shape of a SOM. 

 

The size is actually the
number of neurons for a SOM. It can be determined arbitrarily, but one principle is that
the size should be sufficient to detect the pattern or structure of SOM (Wilppu 1997).
The number of neurons can be arranged in a 1- or 2-dimensional space (dimensionality).
Usually three kinds of shape are allowed, i.e. sheet, cylinder or toroid, but sheet is the
default shape.

 

Step 3: Initialize output vectors 

 

M

 

 randomly or linearly. 

 

At the initialisation step, each
neuron is assigned randomly or linearly by some values for the 

 

d

 

 variables. Thus an
initial SOM is imposed in the input vector space for the following training process. 

 

Step 4: Define the parameters that control the training process involving map lattice,
neighbourhood, and training rate functions. 

 

The number of neurons defined can be
arranged in two different map lattices, namely hexagonal and rectangular lattices.
However, the hexagonal lattice is usually preferred because of its better visual effect
(Kohonen 2001). The Gaussian neighbourhood function is often adopted and is defined
by:

[3]
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 is the neighbourhood radius at time 
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ci is the distance between neurons c and
i on the SOM grid. Note that the size of the neighbourhood Nc(t) reduces slowly as a
function of time, i.e. it starts with fairly large neighbourhoods and ends with small ones
(see Figure 1). The training rate function can be linear, exponential or inversely propor-
tional to time t (see Vesanto et al. 2000, p. 10). For instance, α(t) = α0/(1 + 100t/T) is
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the function we adopted in the following case study, where T is the training length and
α0 is the initial learning rate. Usually the training length is divided into two periods: t1

for the initial coarse structuring period and t2 for the fine structuring period. 

Step 5: Select one input vector x, and determine its Best-Matching Unit (BMU) or
winning neuron using Equation (1). Although Euclidian distance is usually used in
Equation (1), it could be various other measures defining ‘nearness’ and ‘similarity’.
Depending on the form of data measurement, other measures are allowed as long as
they represent the distance between input and output vectors. 

Step 6: Update the attributes of the winning neuron and all those neurons within the
neighbourhood of the winning neuron, otherwise leave alone (cf. equation (2) ).

Step 7: Repeat steps 5 to 6 a very large number of times (training length) until a
convergence is reached. The convergence is set like this, mi(t + 1) = mi(t), for t → ∞. In
practice, the training length in epochs is determined by the size of SOM (k) and the size

of the training data (n), for instance for the coarse period .

Following the above steps, all output vectors are projected on to a 1- or 2-
dimensional space, where each neuron corresponds to an output vector that is the
representative of some input vectors. A 2-dimensional hexagonal map lattice grid is
shown in Figure 1 where each hexagonal cell has a uniform neighbourhood.

3 Topological, geometric and semantic properties of streets within a network

It is important to note a distinction between a named street and a street segment. A
named street refers to an entire street apparently identified by a unique name or ID, and
usually consists of multiple street segments, while a street segment is just part of a
named street (streets and named streets will be used interchangeably hereafter in the

Figure 1 The characteristics of a 10 × 10 SOM (t1 < t2 < t3 with hci(t) in equation (3) )
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paper). In earlier studies, such as Thomson and Richardson (1995) and Morgenstern
and Schurer (1999), the generalisation of the street network is based on street segments
(in our terminology), but the study presented here is based on the entire named street. 

For a street network, each street has different roles and there are numerous
attributes that govern the roles of individual streets from the topological, geometric, and
semantic perspectives. Before presenting these attributes, we shall introduce some basics
on graph theory and a graph-theoretic representation of street networks.

3.1 Graph and a graph-theoretic representation of street networks

A graph G consists of a finite set of nodes (or vertices) V and a finite set of links (or edges)
E. A graph is often denoted as G(V, E) where V is the set of nodes, V = {v1, v2, . . . , vn},
and E is the set of links, E = {vivj}. For computational purposes we represent a connected,
undirected and unweighted (i.e. all links with a unit distance) graph by an adjacency
matrix R(G): 

where [4]

It should be noted that this adjacency matrix R(G) is symmetric, i.e. ∀rij ⇒ rij = rji. Also
all diagonal elements of R(G) are equal to zero so are not needed. Thus the lower or
upper triangular matrix of R(G) is sufficient for a complete description of the graph G.
For a more complete introduction to graph theory, readers can refer for example to
Gross and Yellen (1999).

A graph-theoretic representation of street works, which take named streets as nodes
and street intersections as links of a connectivity graph, illustrates many nice properties
for the understanding of the topology of street networks (Jiang and Claramunt 2004).
For instance, Figure 2 shows a street network of a small urban area, and its corresponding

Figure 2 A small street network (a) and its connectivity graph (b). Note that every node in
(b) is labeled by the corresponding street name, and the size of nodes shows the degree of
connectivity of individual streets
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connectivity graph. In this connectivity graph the streets are modelled as nodes and the
junctions as links. From this representation, we observe that this network is relatively
closed: a bell-shaped street (Sätrahöjden) constitutes a form of boundary, and it is
internally connected by two streets (Norrbågen and Nyöstervägen) that form an
internal communication link. These three main streets form the main structure of this
network to which other short streets are connected.

3.2 Topological properties

The topological properties of a street network are the properties that are invariant
in a homeomorphic (rubbersheet) transformation. Examples of such properties are
intersection and connectedness. We assume that there are no prohibited turns or
driving directions involved in the street networks, so the connectivity graph
introduced above is an undirected graph, and the corresponding adjacency matrix is
symmetrical.

Distinct from conventional geometric views of street networks, the connectivity
graph takes a topological view of the network. It should be noted that geometric prop-
erties, e.g. Euclidean distances, are not stored in a connectivity graph. Concepts such as
shortest path and shortest distance are here purely graph-based and should not be
confused with their counterparts in a geometric network. In a connectivity graph, the
shortest distance is defined as the minimum number of links between two nodes. By
using the connectivity graph representation, many topological properties regarding the
status of individual streets can be measured. Among many other measures initially
developed from Social Network Analysis (SNA) (Scott 2000), centrality is one of import-
ant structural properties and it involves three important measures: degree, closeness and
betweenness (Freeman 1979).

Degree centrality, also called connectivity, measures the number of streets that
interconnect a given street. In a corresponding connectivity graph, degree is the number
of nodes that link a given node. Formally, the degree centrality for a given node vi is
defined by:

[5]

Closeness centrality measures the smallest number of links from a street to all other
streets. In a corresponding connectivity graph, it is the shortest distance from a given
node to all other nodes within a network. It is defined by:

[6]

where d(vi , vk) is the shortest distance between nodes vi and vk.
Betweenness centrality measures to what extent a street is between streets. In a

corresponding connectivity graph, it reflects the intermediary location of a node along
indirect relationships linking other nodes. Formally it is defined by:

[7]
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where pij is the number of shortest paths from i to j, and pikj is the number of shortest

paths from i to j that pass through k, so  is the proportion of shortest paths from i
to j that pass through k.

These three centrality measures describe the street status from a topological per-
spective. We can remark that degree shows topological relationship between a street and
its immediate neighbouring street(s), while closeness shows the structural relationship
between a street and all other streets. Both can be characterized as a local measure and
a global measure respectively. A street with high connectivity does not guarantee that
it will be well connected to all other streets. In addition, a street with few direct
connections does not mean that it is less important, since it can play a ‘bridge’ role,
which means that without it a network may be broken into two pieces. This property
is controlled by betweenness. 

3.3 Geometric and semantic properties

Common sense tells us that long and wide streets tend to be more important. Thus,
length and width are two most important geometrical properties. In practice length is
often used for selection of a street in a network. For example, in the database specifica-
tions from Lantmäteriet (the Swedish national mapping agency) it is stated that dirt
roads should be represented in the target data set if they: 

“lead to settlements (dirt roads between 100–250 m are represented as ramps) or
other cartographic objects (minimum length 250 m), connect roads, are along
shores or have a length of more than 500 m” (Lantmäteriet 1997, p. 142; authors’
translation).

It is apparent that this rule is, apart from the length of the road, also based on connec-
tivity properties.

Semantic attributes such as function classes (highway, motorway, and normal street)
and speed limit; 90 km, 70 km and 50 km are important attributes to consider in the
course of selection. Examples of other interesting properties are semantic properties that
can be derived from linguistics and ontology. There are different names in English for a
street such as road, path, avenue, boulevard, and square. These names usually imply
different levels in terms of importance and function class, e.g. a boulevard is more
important than a path. Based on such a semantic analysis, each street can be quantized
with a number to show different levels, and it can then be considered together with
topological and geometric properties as well. However since such a semantic property
is language dependent, we leave it out of our current study. 

4 A SOM-based selection approach considering multiple properties

Cartographic generalization involves two types of processes: model-based (the initial
choices of the relevant information to be presented on the map) and geometric-based
(the simplification of graphic characteristics of objects) (Weibel 1995). Model generaliza-
tion takes place prior to geometric generalization. For example, generalising a street
network can be divided into the following processes: (1) select the street objects to be
presented on the map (model-based generalisation); and (2) simplify, smooth and displace
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the streets to make the map readable (geometric-based generalisation). In this study we
just consider model-based generalisation of a street network.

The process of our selection approach is as follows:

1. Each named street constitutes a vector in attribute space. This space is spanned by
attributes of the types that were described in section 3.

2. These vectors then are used to train a SOM as described in section 2. In this SOM,
neurons correspond to similar streets in terms of attributes introduced. 

3. Selection is based on the two basic categories identified by the SOM.

From a more practical perspective, the streets and their corresponding attributes are
used to create input vectors. The training process is performed using the SOM Toolbox
associated with Matlab (Vesanto et al. 2000). Although the number of output vectors
(or neurons) of a SOM can be arbitrarily determined, we usually choose a number that
is smaller than the number of input vectors. Through the training process, each street
acquires a best matching unit from the set of neurons within the SOM. It helps to set
up a linkage between a SOM and corresponding street network. The specific procedure
for setting up such a linkage using the ArcView GIS platform is as follows:

1. Create a polygon theme in which each polygon has a hexagonal shape, representing
a neuron with output vectors as attributes in a table (SOM table).

2. Create a link table (LINK table) with two fields, namely BMU and street ID.
3. Link the SOM table and LINK table (note fields SOM-ID and BMU are equivalent). 
4. Link the LINK table and NETWORK table through common field street-ID.

Through the above procedure, a linkage is set up between a SOM and a corresponding
street network (Figure 3).

One principle of our approach is that all streets should be interconnected, which is
partially controlled by the betweenness measure. If the original network is an integrated
one, it should be kept as one in the reduced map scale and never broken into pieces. To
meet this requirement, we must select some less important streets to join separated street
clusters. This was achieved interactively.

5 A Case Study

To illustrate the selection approach, a case study was carried out using the street net-
work of Munich, which involves a total of 785 streets. We used seven attributes namely

Figure 3 Linkage between SOM and a street network
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degree, closeness, betweenness, length, lanes (a modified version of width), speed limit
and function class as described in section 3. These attributes nicely describe topological,
geometric and semantic properties of individual streets within the network. They were
used to define input vectors for the following training process. 

5.1 Input vectors

Our first step was to derive a connectivity graph based on the network. The structural
representation provides a sense as to how each street interconnects to others. The process,
with reference to Equation (4), was performed with an Avenue script with ArcView GIS,
i.e. for each street (i), check if it intersects every other street ( j), if yes, rij = 1, otherwise
rij = 0. Thus, a connectivity graph can be derived to represent such interconnections.
Figure 4 illustrates the street network and its connectivity graph. Based on the connec-
tivity graph, the topological properties can be calculated; it is performed using a network
analysis software package called Pajek (Batagelj and Mrvar 1997). The remaining prop-
erties are directly derived from a GIS database with the network. Both length and lanes
were transformed from street segments to individual streets by taking an average value
of each attribute assigned to the street segments. It is important to note that the attributes
class and speed are in an ordinal scale, e.g. 1 for the street with the highest speed limit and
8 for the lowest. Furthermore, function class and speed limit are inversely proportional to
the importance of a street, i.e. the higher the value, the less important the street. In this
case, we take a reciprocal value of these attribute values for the training process. Thus all seven
attributes have the same order in terms of the importance of the streets. The seven attributes
constitute an attribute space in which each input vector has a unique location. Table 1
shows part of the input vectors of the multi-dimensional dataset containing 785 records.

5.2 Initialization and SOM training process

With the input vectors we are ready to do the second step – namely initialisation
and training. To this end, we first define a map size of 100, i.e. a 10 × 10 SOM in a
two-dimensional grid. Then using linear initialization we create output vectors, each of

Figure 4 The Munich street network (a) and its connectivity graph (b)
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which has seven attributes. The initialised output vectors were trained based on the
input vectors. The variation of individual attributes noted from Table 1 is very large, so
we determined to transform the dataset into a unit interval [0, 1] to guarantee that all
variables have the same variation. From cartographic generalization practise, we deter-
mined that function class has the highest priority in street selection, and this is followed
by geometrical and topological properties. Therefore, we adopt the weight vector [1, 1,
1, 2, 2, 2, 3] for the seven attributes in the order: [degree, closeness, betweenness, length,
lanes, speed, class]. Users can adopt a different weight vector according to their different
generalization purposes. During the training process, a Gaussian neighbourhood function
was chosen. Other detailed parameter settings are listed in Table 2.

It is important to note that the size of SOM has a significant impact on detecting
clusters (Wilppu 1997), but the size we chose seemed sufficient to detect the pattern.
Table 3 illustrates the first 10 neurons of the trained map of the 10 × 10 SOM; each row
of the table corresponds to a neuron of the SOM. The 10 neurons correspond to the

Table 1 The first 10 input streets of the Munich network

Street-name Degree Closeness Betweenness Length Lanes Speed Class

ACKER 2 0.149 0.000 2.42 1 0.143 0.2
ADALBERT 11 0.185 0.012 13.81 1 0.145 0.2
ADAM-ERMINGER- 2 0.117 0.000 0.55 1 0.143 0.2
ADELGUNDEN 6 0.187 0.003 3.14 1 0.152 0.2
ADELHEID 9 0.169 0.006 6.04 1 0.140 0.2
ADLZREITER 3 0.153 0.003 4.17 1 0.154 0.2
ADOLF-KOLPING- 4 0.153 0.000 4.37 1 0.160 0.2
AGILOLFINGER 4 0.128 0.001 4.71 1 0.143 0.2
AGNES 10 0.168 0.003 12.85 1 0.143 0.2
AIGNER 4 0.141 0.003 3.35 1 0.143 0.2

Table 2 Parameter settings for the SOM training 

Parameter Value

Size (m) 100
Dimensionality 2
Shape Sheet
Map lattice Hexagonal
Neighbourhood Gaussian
Learning rate (α ) α (t) = α0/(1 + 100t/ T )
Initial learning rate (α 0) 0.5 for the coarse period

0.05 for the fine period
Training length in epochs (T ) 0.51 epochs for the coarse period

2.04 epochs for the fine period
Initial neighbourhood radius (σ 0) 5
Final neighbourhood radius 1.25 for the coarse period

1 for the fine period
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left most column of the SOM shown in Plate 3. It should be noted that following the
training process, the vectors have been transformed back to initial data ranges. The rows
in Tables 1 and 3 correspond to input vectors and output vectors respectively in Plate 3.

5.3 Visualization of the SOM

The trained SOM is composed of neurons in a two dimensional space that preserve the
initial pattern in the attribute space of the input streets (or input vectors in terms of SOM).
In other words, the seven dimensional dataset is now mapped into a two dimensional
SOM, retaining the initial pattern. Such a pattern can be seen clearly from visualizing
the SOM in terms of individual attributes. It should be noted that each cell or neuron is
not a particular street(s), but instead it represents a group of similar streets in terms of
the seven attributes. Plate 4 illustrates component views of SOM from the perspective
of the seven attributes. We can remark that the smooth colour transitions with the
visualizations imply similar neurons being together, and some of attributes have significant
correlation, e.g., degree and length. 

The two dimensional SOM arranges similar neurons within a neighbourhood, but is does not
convey how similar or dissimilar adjacent neurons are. Instead, a unified distance matrix
(U-matrix) between the output vectors of adjacent units of a SOM illustrates the degree
of similarity by calculating distances among them (Ultsch and Siemon 1990). Thus it helps
to illustrate the cluster structure of the SOM. Plate 5(a) is the U-matrix representation,
where six hexagons around each neuron show the similarity between neurons, i.e. the lighter
the hexagon the greater the similarity. Plates 5(b), (c) and (d) shows various ways of
visualizing the U-matrix using different visual variables such as colour intensity, size of cells
and colour hues, noting that the D-matrix is a distance matrix from a neuron to its neigh-
bouring neurons. Our aim is not to make a detailed clustering analysis, but rather to make
a distinction between those that are selected or eliminated. From the set of visualizations,
we note that there are two clusters as indicted by A and B, although the boundary of the
two clusters is not so clear-cut, and similarity within cluster B is not as homogeneous
as in cluster A. However the distinction between the two clusters might be more clearly
reflected in the corresponding network as illustrated in the following subsection.

Table 3 The first 10 neurons with the SOM 

Neuron-ID Degree Closeness Betweenness Length Lanes Speed Class

1 2.482 0.125 0.000 2.2 1.000 0.141 0.200
2 2.625 0.129 0.000 2.4 1.000 0.143 0.201
3 2.852 0.131 0.001 2.5 1.000 0.149 0.202
4 3.034 0.138 0.001 2.7 1.003 0.158 0.203
5 3.114 0.141 0.001 2.9 1.022 0.164 0.204
6 4.095 0.148 0.004 4.5 1.103 0.164 0.212
7 6.233 0.161 0.011 8.9 1.325 0.163 0.234
8 8.071 0.175 0.021 12.6 1.544 0.164 0.279
9 7.701 0.177 0.023 13.9 1.740 0.168 0.313

10 6.858 0.178 0.023 12.1 1.781 0.169 0.334
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5.4 Selection or elimination of streets at different levels of detail

The above SOM is imported into the ArcView GIS as a polygon theme and each hexagon
represents a neuron with an output vector to be stored in the theme table. Using the
principle given in section 4, we set up a linkage between the SOM and the Munich
network. The 785 streets have been grouped into 100 neurons, and each of them repres-
ents a cluster. The training process can be considered as a transformation of generaliza-
tion and clustering. We have also seen the two clusters in terms of a distance matrix.
In the corresponding network, we can see that cluster A represents a set of unimportant
streets to be eliminated in the course of generalization. Figure 5 illustrates two levels

Figure 5 Two levels of detail of streets to be eliminated
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of detail for streets intended for elimination (dark lines in the network view and dark
cells in the SOM view). In the similar way, Figure 6 illustrates two levels of detail for
those streets to be retained. We note that the selected neurons in Figure 6 are those
neurons with higher values for the various attributes shown in Plate 4. 

These figures illustrate how the SOM-based approach can be used to select and
eliminate streets from a network. The approach is robust and flexible, as it considers
multiple attributes involving topological, geometric and semantic properties. Further-
more, a dynamic linkage has been set up between the SOM and the corresponding
network for selection or elimination purposes.

Figure 6 Two levels of detail of streets to be selected
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6 Conclusions and Future Work

From the model generalization perspective, this paper adopts a street-centred view and
considers multiple attributes from topological, geometric and semantic aspects for the
selection of streets from a network. Our approach clusters streets in different categories
according to the similarity distance in a high dimensional attribute space using the SOM
training algorithm. Through a linkage between the SOM and the original street net-
work, end users are able to select streets for model generalization purposes. The case
study applied to the Munich network illustrates that the SOM-based approach can be
used as an effective method for the selection of streets. It also shows that it is an effective
tool for data visualization and exploration for multi-dimensional geospatial data. 

It is important to note that for a given dataset and defined SOM properties, the
SOM training process is dependent on the parameter settings. The settings we adopted
are default settings (Table 2) recommended by the SOM toolbox. This issue deserves
further research. Furthermore, the seven variables are certainly not exhaustive; other
combinations and weightings might be more appropriate. Although SOM is applied to
the selection of streets, it could be applied to the selection or generalization of other
spatial objects, as long as such selection is governed by multiple attributes. Our future
work will seek to apply the approach to the generalization of other spatial objects. 
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Plate 3 Illustration of SOM principle

Plate 4 Component visualizations of the SOM

Plates 3 and 4 from B Jiang  and L Harrie. ‘Selection of Streets from a Network Using Self-
Organizing Maps’, 335–350
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Plate 5 U-matrix visualizations of the SOM

Plate 5 from B Jiang  and L Harrie. ‘Selection of Streets from a Network Using Self-Organizing
Maps’, 335–350




